
a faster pseudopolynomial time algorithm
for subset sum

Konstantinos Koiliaris, Chao Xu
SODA 2017

University of Illinois, Urbana-Champaign



introduction



the subset sum problem

Input: A set S of n positive integers x1, x2, x3, . . . , xn and a positive
target integer t.

Output: Is there a subset T of S such that
∑

xi∈T xi = t?

2



the subset sum problem

Input: A set S of n positive integers x1, x2, x3, . . . , xn and a positive
target integer t.

Output: Is there a subset T of S such that
∑

xi∈T xi = t?

2



the subset sum problem

Classical problem.

One of Karp’s original NP-hard problems.
[Karp ’72]

Weakly NP-complete

Textbook DP algorithm due to Bellman that runs in O(nt)
pseudopolynomial time.

[Bellman ’56]

3



the subset sum problem

Classical problem.

One of Karp’s original NP-hard problems.
[Karp ’72]

Weakly NP-complete

Textbook DP algorithm due to Bellman that runs in O(nt)
pseudopolynomial time.

[Bellman ’56]

3



the subset sum problem

Classical problem.

One of Karp’s original NP-hard problems.
[Karp ’72]

Weakly NP-complete

Textbook DP algorithm due to Bellman that runs in O(nt)
pseudopolynomial time.

[Bellman ’56]

3



the subset sum problem

Classical problem.

One of Karp’s original NP-hard problems.
[Karp ’72]

Weakly NP-complete

Textbook DP algorithm due to Bellman that runs in O(nt)
pseudopolynomial time.

[Bellman ’56]

3



applications

As a subroutine:

∙ knapsack
∙ scheduling
∙ graph problems with cardinality constraints

In practice:

∙ power indices
∙ set-based queries in databases
∙ applications in security

4



applications

As a subroutine:

∙ knapsack

∙ scheduling
∙ graph problems with cardinality constraints

In practice:

∙ power indices
∙ set-based queries in databases
∙ applications in security

4



applications

As a subroutine:

∙ knapsack
∙ scheduling

∙ graph problems with cardinality constraints

In practice:

∙ power indices
∙ set-based queries in databases
∙ applications in security

4



applications

As a subroutine:

∙ knapsack
∙ scheduling
∙ graph problems with cardinality constraints

In practice:

∙ power indices
∙ set-based queries in databases
∙ applications in security

4



applications

As a subroutine:

∙ knapsack
∙ scheduling
∙ graph problems with cardinality constraints

In practice:

∙ power indices

∙ set-based queries in databases
∙ applications in security

4



applications

As a subroutine:

∙ knapsack
∙ scheduling
∙ graph problems with cardinality constraints

In practice:

∙ power indices
∙ set-based queries in databases

∙ applications in security

4



applications

As a subroutine:

∙ knapsack
∙ scheduling
∙ graph problems with cardinality constraints

In practice:

∙ power indices
∙ set-based queries in databases
∙ applications in security

4



previous work

∙ Original DP solution: O(nt) — [Bellman ’56]

∙ Fast for small max S: O(nmax S) — [Pisinger ’91]

∙ Fast for small σ: O(σ3/2) — [Klinz et al. ’99]

∙ Data structure: Õ(nmax S) — [Eppstein ’97, Serang ’14, ’15]

∙ RAM Model implementation of Bellman: O(nt/ log t) — [Pisinger ’03]

∙ First poly space algorithm: Õ(n3t) — [Lokshtanov et al. ’10]

5



previous work

∙ Original DP solution: O(nt) — [Bellman ’56]

∙ Fast for small max S: O(nmax S) — [Pisinger ’91]

∙ Fast for small σ: O(σ3/2) — [Klinz et al. ’99]

∙ Data structure: Õ(nmax S) — [Eppstein ’97, Serang ’14, ’15]

∙ RAM Model implementation of Bellman: O(nt/ log t) — [Pisinger ’03]

∙ First poly space algorithm: Õ(n3t) — [Lokshtanov et al. ’10]

5



previous work

∙ Original DP solution: O(nt) — [Bellman ’56]

∙ Fast for small max S: O(nmax S) — [Pisinger ’91]

∙ Fast for small σ: O(σ3/2) — [Klinz et al. ’99]

∙ Data structure: Õ(nmax S) — [Eppstein ’97, Serang ’14, ’15]

∙ RAM Model implementation of Bellman: O(nt/ log t) — [Pisinger ’03]

∙ First poly space algorithm: Õ(n3t) — [Lokshtanov et al. ’10]

5



previous work

∙ Original DP solution: O(nt) — [Bellman ’56]

∙ Fast for small max S: O(nmax S) — [Pisinger ’91]

∙ Fast for small σ: O(σ3/2) — [Klinz et al. ’99]

∙ Data structure: Õ(nmax S) — [Eppstein ’97, Serang ’14, ’15]

∙ RAM Model implementation of Bellman: O(nt/ log t) — [Pisinger ’03]

∙ First poly space algorithm: Õ(n3t) — [Lokshtanov et al. ’10]

5



previous work

∙ Original DP solution: O(nt) — [Bellman ’56]

∙ Fast for small max S: O(nmax S) — [Pisinger ’91]

∙ Fast for small σ: O(σ3/2) — [Klinz et al. ’99]

∙ Data structure: Õ(nmax S) — [Eppstein ’97, Serang ’14, ’15]

∙ RAM Model implementation of Bellman: O(nt/ log t) — [Pisinger ’03]

∙ First poly space algorithm: Õ(n3t) — [Lokshtanov et al. ’10]

5



previous work

∙ Original DP solution: O(nt) — [Bellman ’56]

∙ Fast for small max S: O(nmax S) — [Pisinger ’91]

∙ Fast for small σ: O(σ3/2) — [Klinz et al. ’99]

∙ Data structure: Õ(nmax S) — [Eppstein ’97, Serang ’14, ’15]

∙ RAM Model implementation of Bellman: O(nt/ log t) — [Pisinger ’03]

∙ First poly space algorithm: Õ(n3t) — [Lokshtanov et al. ’10]

5



our contribution

We further improve the state-of-the-art for the subset sum by
providing the fastest deterministic pseudopolynomial time
algorithm for the problem.

Main Theorem [Koiliaris & Xu ‘17]. The subset sum problem can be
decided in Õ

(
min

{√
nt, t 4/3

})
time.

Concurrent to our work, Bringmann showed that if randomization is
allowed the subset sum problem can be decided in Õ(t), with
one-sided error probability 1/n.

[Bringmann ’17]

6



our contribution

We further improve the state-of-the-art for the subset sum by
providing the fastest deterministic pseudopolynomial time
algorithm for the problem.

Main Theorem [Koiliaris & Xu ‘17]. The subset sum problem can be
decided in Õ

(
min

{√
nt, t 4/3

})
time.

Concurrent to our work, Bringmann showed that if randomization is
allowed the subset sum problem can be decided in Õ(t), with
one-sided error probability 1/n.

[Bringmann ’17]

6



our contribution

We further improve the state-of-the-art for the subset sum by
providing the fastest deterministic pseudopolynomial time
algorithm for the problem.

Main Theorem [Koiliaris & Xu ‘17]. The subset sum problem can be
decided in Õ

(
min

{√
nt, t 4/3

})
time.

Concurrent to our work, Bringmann showed that if randomization is
allowed the subset sum problem can be decided in Õ(t), with
one-sided error probability 1/n.

[Bringmann ’17]

6



all subset sums

For this we will consider the following all subset sums problem:

Given a set S of n positive integers and an (upper bound) positive
integer u, compute all the realizable sums up to u.

Computing all subset sums for some u ≥ t also answers the subset
sum problem with target value t.

7



all subset sums

For this we will consider the following all subset sums problem:

Given a set S of n positive integers and an (upper bound) positive
integer u, compute all the realizable sums up to u.

Computing all subset sums for some u ≥ t also answers the subset
sum problem with target value t.

7



all subset sums

For this we will consider the following all subset sums problem:

Given a set S of n positive integers and an (upper bound) positive
integer u, compute all the realizable sums up to u.

Computing all subset sums for some u ≥ t also answers the subset
sum problem with target value t.

7



algorithm



outline

Straightforward divide-and-conquer algorithm for the all subset
sums problem:

∙ Partition the set S into two sets
∙ Recursively compute their subset sums
∙ Combine them together using FFT

9



outline

Straightforward divide-and-conquer algorithm for the all subset
sums problem:

∙ Partition the set S into two sets

∙ Recursively compute their subset sums
∙ Combine them together using FFT

9



outline

Straightforward divide-and-conquer algorithm for the all subset
sums problem:

∙ Partition the set S into two sets
∙ Recursively compute their subset sums

∙ Combine them together using FFT

9



outline

Straightforward divide-and-conquer algorithm for the all subset
sums problem:

∙ Partition the set S into two sets
∙ Recursively compute their subset sums
∙ Combine them together using FFT

9



outline

Main idea improve the “conquer” step:

∙ If sets S, T lie in a short and light interval, then one can combine
their subset sums quickly as their total sum will be small.

∙ If sets S, T lie in a long and heavy interval, then one can combine
their subset sums quickly by ignoring most of the sums as they
exceed the upper bound.

10



outline

Main idea improve the “conquer” step:

∙ If sets S, T lie in a short and light interval, then one can combine
their subset sums quickly as their total sum will be small.

∙ If sets S, T lie in a long and heavy interval, then one can combine
their subset sums quickly by ignoring most of the sums as they
exceed the upper bound.

10



outline

Main idea improve the “conquer” step:

∙ If sets S, T lie in a short and light interval, then one can combine
their subset sums quickly as their total sum will be small.

∙ If sets S, T lie in a long and heavy interval, then one can combine
their subset sums quickly by ignoring most of the sums as they
exceed the upper bound.

10



notation

∙ Jx : yK = {x, x+ 1, . . . , y} is the set of integers in the interval [x, y].

∙ For two sets X and Y, X⊕ Y = {x+ y | x ∈ X and y ∈ Y} is the set of
pairwise sums.

∙ The set of all subset sums realizable by subsets of S is denoted by

∑∑∑
(S) =

{∑
t∈T

t
∣∣∣∣∣ T ⊆ S

}
.

∙ If P and Q form a partition of a set S, then
∑∑∑

(P)⊕
∑∑∑

(Q) =
∑∑∑

(S).

11



notation

∙ Jx : yK = {x, x+ 1, . . . , y} is the set of integers in the interval [x, y].
∙ For two sets X and Y, X⊕ Y = {x+ y | x ∈ X and y ∈ Y} is the set of
pairwise sums.

∙ The set of all subset sums realizable by subsets of S is denoted by

∑∑∑
(S) =

{∑
t∈T

t
∣∣∣∣∣ T ⊆ S

}
.

∙ If P and Q form a partition of a set S, then
∑∑∑

(P)⊕
∑∑∑

(Q) =
∑∑∑

(S).

11



notation

∙ Jx : yK = {x, x+ 1, . . . , y} is the set of integers in the interval [x, y].
∙ For two sets X and Y, X⊕ Y = {x+ y | x ∈ X and y ∈ Y} is the set of
pairwise sums.

∙ The set of all subset sums realizable by subsets of S is denoted by

∑∑∑
(S) =

{∑
t∈T

t
∣∣∣∣∣ T ⊆ S

}
.

∙ If P and Q form a partition of a set S, then
∑∑∑

(P)⊕
∑∑∑

(Q) =
∑∑∑

(S).

11



notation

∙ Jx : yK = {x, x+ 1, . . . , y} is the set of integers in the interval [x, y].
∙ For two sets X and Y, X⊕ Y = {x+ y | x ∈ X and y ∈ Y} is the set of
pairwise sums.

∙ The set of all subset sums realizable by subsets of S is denoted by

∑∑∑
(S) =

{∑
t∈T

t
∣∣∣∣∣ T ⊆ S

}
.

∙ If P and Q form a partition of a set S, then
∑∑∑

(P)⊕
∑∑∑

(Q) =
∑∑∑

(S).

11



short and light

Lemma [Short and Light]. Given a set of positive integers S with total
sum σ, one can compute the set of all subset sums

∑∑∑
(S) ∩ J0 : uK in

O(σ logσ logn) time.

Proof Sketch.

∙ Partition S into two sets L, R of (roughly) equal cardinality, and
compute recursively L′ =

∑∑∑
(L) and R′ =

∑∑∑
(R).

∙ Notice that since the sets L′,R′ ⊆ J0 : σK, we can compute L′ ⊕ R′ in
O(σ logσ) time via FFT.

∙ Since the divide-and-conquer recursion has logn levels, we get
the O(logn(σ logσ)) promised running time.

12



short and light

Lemma [Short and Light]. Given a set of positive integers S with total
sum σ, one can compute the set of all subset sums

∑∑∑
(S) ∩ J0 : uK in

O(σ logσ logn) time.

Proof Sketch.

∙ Partition S into two sets L, R of (roughly) equal cardinality, and
compute recursively L′ =

∑∑∑
(L) and R′ =

∑∑∑
(R).

∙ Notice that since the sets L′,R′ ⊆ J0 : σK, we can compute L′ ⊕ R′ in
O(σ logσ) time via FFT.

∙ Since the divide-and-conquer recursion has logn levels, we get
the O(logn(σ logσ)) promised running time.

12



short and light

Lemma [Short and Light]. Given a set of positive integers S with total
sum σ, one can compute the set of all subset sums

∑∑∑
(S) ∩ J0 : uK in

O(σ logσ logn) time.

Proof Sketch.

∙ Partition S into two sets L, R of (roughly) equal cardinality, and
compute recursively L′ =

∑∑∑
(L) and R′ =

∑∑∑
(R).

∙ Notice that since the sets L′,R′ ⊆ J0 : σK, we can compute L′ ⊕ R′ in
O(σ logσ) time via FFT.

∙ Since the divide-and-conquer recursion has logn levels, we get
the O(logn(σ logσ)) promised running time.

12



short and light

Lemma [Short and Light]. Given a set of positive integers S with total
sum σ, one can compute the set of all subset sums

∑∑∑
(S) ∩ J0 : uK in

O(σ logσ logn) time.

Proof Sketch.

∙ Partition S into two sets L, R of (roughly) equal cardinality, and
compute recursively L′ =

∑∑∑
(L) and R′ =

∑∑∑
(R).

∙ Notice that since the sets L′,R′ ⊆ J0 : σK, we can compute L′ ⊕ R′ in
O(σ logσ) time via FFT.

∙ Since the divide-and-conquer recursion has logn levels, we get
the O(logn(σ logσ)) promised running time.

12



short and light

Lemma [Short and Light]. Given a set of positive integers S with total
sum σ, one can compute the set of all subset sums

∑∑∑
(S) ∩ J0 : uK in

O(σ logσ logn) time.

Proof Sketch.

∙ Partition S into two sets L, R of (roughly) equal cardinality, and
compute recursively L′ =

∑∑∑
(L) and R′ =

∑∑∑
(R).

∙ Notice that since the sets L′,R′ ⊆ J0 : σK, we can compute L′ ⊕ R′ in
O(σ logσ) time via FFT.

∙ Since the divide-and-conquer recursion has logn levels, we get
the O(logn(σ logσ)) promised running time.

12



short and light

Lemma [Short and Light]. Given a set of positive integers S with total
sum σ, one can compute the set of all subset sums

∑∑∑
(S) ∩ J0 : uK in

O(σ logσ logn) time.

Proof Sketch.

∙ Partition S into two sets L, R of (roughly) equal cardinality, and
compute recursively L′ =

∑∑∑
(L) and R′ =

∑∑∑
(R).

∙ Notice that since the sets L′,R′ ⊆ J0 : σK, we can compute L′ ⊕ R′ in
O(σ logσ) time via FFT.

∙ Since the divide-and-conquer recursion has logn levels, we get
the O(logn(σ logσ)) promised running time.

12



long and heavy

Lemma [Long and Heavy]. Given a set S ⊆ Jx : x+ ℓK of size n,
computing the set

∑∑∑
(S) ∩ J0 : uK takes Õ((u/x)2ℓ) time.

Proof Sketch.

13



long and heavy

Lemma [Long and Heavy]. Given a set S ⊆ Jx : x+ ℓK of size n,
computing the set

∑∑∑
(S) ∩ J0 : uK takes Õ((u/x)2ℓ) time.

Proof Sketch.

13



long and heavy

S
x x+ ℓ

14



long and heavy

L R

∑∑∑
(L)

∑∑∑
(R)

δ

Step 1

x x+ ℓ

15



long and heavy

∑∑∑
(L),

∑∑∑
(R)

∈

z = ix+ j

Step 2

16



long and heavy

f
!0:k"×!0:ℓk"(i, j) ∈

∑∑∑
(L),

∑∑∑
(R)

∈

z = ix+ j

Step 2

17



long and heavy

f

but shorter

Higher #

f
(

∑∑∑

(L)
)

f
(

∑∑∑

(R)
)

dimensions

intervalsf
!0:k"×!0:ℓk"(i, j) ∈

∑∑∑
(L),

∑∑∑
(R)

∈

z = ix+ j

Step 2

18



long and heavy

⇒

f
(

∑∑∑

(L)
)

⊕ f
(

∑∑∑

(R)
)

FFT in Õ(ℓk2)

f

but shorter

Higher #

f
(

∑∑∑

(L)
)

f
(

∑∑∑

(R)
)

dimensions

intervalsf
!0:k"×!0:ℓk"(i, j) ∈

∑∑∑
(L),

∑∑∑
(R)

∈

z = ix+ j

Step 2

19



long and heavy

f−1∑∑∑
(L ∪R)

⇒

f
(

∑∑∑

(L)
)

⊕ f
(

∑∑∑

(R)
)

FFT in Õ(ℓk2)

f

but shorter

Higher #

f
(

∑∑∑

(L)
)

f
(

∑∑∑

(R)
)

dimensions

intervalsf
!0:k"×!0:ℓk"(i, j) ∈

∑∑∑
(L),

∑∑∑
(R)

∈

z = ix+ j

Step 2

20



long and heavy

∑∑∑
(S)

=

f−1∑∑∑
(L ∪R)

⇒

f
(

∑∑∑

(L)
)

⊕ f
(

∑∑∑

(R)
)

FFT in Õ(ℓk2)

f

but shorter

Higher #

f
(

∑∑∑

(L)
)

f
(

∑∑∑

(R)
)

dimensions

intervalsf
!0:k"×!0:ℓk"(i, j) ∈

∑∑∑
(L),

∑∑∑
(R)

∈

z = ix+ j

Step 2

21



long and heavy

and if k =

⌊
u

x

⌋
=⇒ Õ

((
u

x

)2

ℓ

)
.

∑∑∑
(S)

=

f−1∑∑∑
(L ∪R)

⇒

f
(

∑∑∑

(L)
)

⊕ f
(

∑∑∑

(R)
)

FFT in Õ(ℓk2)

f

but shorter

Higher #

f
(

∑∑∑

(L)
)

f
(

∑∑∑

(R)
)

dimensions

intervalsf
!0:k"×!0:ℓk"(i, j) ∈

∑∑∑
(L),

∑∑∑
(R)

∈

z = ix+ j

Step 2

22



the algorithm

S

u1

23



the algorithm

S

u1

23



the algorithm

S0 = S ∩ !1 : r0"

Si = S ∩ !ri−1 + 1 : ri"

r0 ≥ 1

ri = ⌊2ir0⌋

|Si| = ni

S0S1 S2 S3 S4 S5

r0 r1 r2 r3 r4

O(log u) intervals

S

u1

24



the algorithm

S0

r01

S

u1

25



the algorithm

Õ(n0r0) = Õ (min{n, r0}r0)

in

Short and Light

⇓
∑∑∑

(S0)

S0

r01

S

u1

26



the algorithm

ri−1 ri

Si

S

u1

27



the algorithm

⇓

Long and Heavy

∑∑∑
(Si)

in

Õ

((
u

ri−1

)2

ℓi

)
= Õ

(
u2

ri−1

)

ri−1 ri

Si

S

u1

28



the algorithm

⇓

Long and Heavy

∑∑∑

(Si)

in

Õ

((
u

ri−1

)2

ℓi

)
= Õ

(
u2

ri−1

)

ri−1 ri

Si

S

u1

=⇒ Õ

(

u2

r0

)

for all intervals

29



the algorithm

r0 r1 r2 r3 r4

log u⊕

i=0

∑∑∑
(Si) ∩ !1 : u" =

∑∑∑
(S) ∩ !1 : u"

O (log u(u log u)) = Õ(u)

⇓

S

u1

30



the algorithm

In total time: u1

Õ

(
min{n, r0}r0 +

u2

r0
+ u

)

r0 =

u

√

n

r0 = u
2/3

S ❀

∑∑∑

(S) ∩ !1 : u"

Õ
(
√

nu

)

Õ
(

u
4/3

)

31



the other algorithm

The second algorithm solves the all subset sums problem modulo m
in finite cyclic groups; i.e., it returns all realizable sums within the
group.

The second algorithm runs in Õ
(√
nm

)
time, where m is the order of

the group.

Not trivial!

32



the other algorithm

The second algorithm solves the all subset sums problem modulo m
in finite cyclic groups; i.e., it returns all realizable sums within the
group.

The second algorithm runs in Õ
(√
nm

)
time, where m is the order of

the group.

Not trivial!

32



the other algorithm

The second algorithm solves the all subset sums problem modulo m
in finite cyclic groups; i.e., it returns all realizable sums within the
group.

The second algorithm runs in Õ
(√
nm

)
time, where m is the order of

the group.

Not trivial!

32



the other algorithm

The second algorithm solves the all subset sums problem modulo m
in finite cyclic groups; i.e., it returns all realizable sums within the
group.

The second algorithm runs in Õ
(√
nm

)
time, where m is the order of

the group.

Not trivial!

32



the other algorithm

The challenge is that the previous algorithm throws away many sums
that fall outside of J1 : uK during its execution, but this can no longer
be done for finite cyclic groups, since these sums stay in the group
and as such must be accounted for.

33



future work



open problems

Can we use these observations on other similar number-based
problems?

Is there a deterministic Õ(t) time algorithm for the subset sum
problem matching its conditional lower bound?

35



open problems

Can we use these observations on other similar number-based
problems?

Is there a deterministic Õ(t) time algorithm for the subset sum
problem matching its conditional lower bound?

35



Thank you

36


	Introduction
	Algorithm
	The Tools

	Future Work

