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introduction



the subset sum problem

Input: A set S of n positive integers x1, x2, x3, . . . , xn and a positive
target integer t.

Output: Is there a subset T of S such that
∑

xi∈T xi = t?
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the subset sum problem

Classical problem.

One of Karp’s original NP-hard problems.
[Karp ’72]

Weakly NP-complete

Textbook DP algorithm due to Bellman that runs in O(nt)
pseudopolynomial time.

[Bellman ’56]
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applications

As a subroutine:

∙ knapsack
∙ scheduling
∙ graph problems with cardinality constraints

In practice:

∙ power indices
∙ set-based queries in databases
∙ applications in security
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previous work

∙ Original DP solution: O(nt) — [Bellman ’56]

∙ Fast for small max S: O(nmax S) — [Pisinger ’91]

∙ Fast for small σ: O(σ3/2) — [Klinz et al. ’99]

∙ Data structure: Õ(nmax S) — [Eppstein ’97, Serang ’14, ’15]

∙ RAM Model implementation of Bellman: O(nt/ log t) — [Pisinger ’03]

∙ First poly space algorithm: Õ(n3t) — [Lokshtanov et al. ’10]
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∙ First poly space algorithm: Õ(n3t) — [Lokshtanov et al. ’10]

5



our contribution

We further improve the state-of-the-art for the subset sum by
providing the fastest deterministic pseudopolynomial time
algorithm for the problem.

Main Theorem [Koiliaris & Xu ‘17]. The subset sum problem can be
decided in Õ

(
min

{√
nt, t 4/3

})
time.

Concurrent to our work, Bringmann showed that if randomization is
allowed the subset sum problem can be decided in Õ(t), with
one-sided error probability 1/n.

[Bringmann ’17]
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all subset sums

For this we will consider the following all subset sums problem:

Given a set S of n positive integers and an (upper bound) positive
integer u, compute all the realizable sums up to u.

Computing all subset sums for some u ≥ t also answers the subset
sum problem with target value t.
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algorithm



outline

Straightforward divide-and-conquer algorithm for the all subset
sums problem:

∙ Partition the set S into two sets
∙ Recursively compute their subset sums
∙ Combine them together using FFT
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outline

Main idea improve the “conquer” step:

∙ If sets S, T lie in a short and light interval, then one can combine
their subset sums quickly as their total sum will be small.

∙ If sets S, T lie in a long and heavy interval, then one can combine
their subset sums quickly by ignoring most of the sums as they
exceed the upper bound.
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notation

∙ Jx : yK = {x, x+ 1, . . . , y} is the set of integers in the interval [x, y].

∙ For two sets X and Y, X⊕ Y = {x+ y | x ∈ X and y ∈ Y} is the set of
pairwise sums.

∙ The set of all subset sums realizable by subsets of S is denoted by

∑∑∑
(S) =

{∑
t∈T

t
∣∣∣∣∣ T ⊆ S

}
.

∙ If P and Q form a partition of a set S, then
∑∑∑

(P)⊕
∑∑∑

(Q) =
∑∑∑

(S).
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short and light

Lemma [Short and Light]. Given a set of positive integers S with total
sum σ, one can compute the set of all subset sums

∑∑∑
(S) ∩ J0 : uK in

O(σ logσ logn) time.

Proof Sketch.

∙ Partition S into two sets L, R of (roughly) equal cardinality, and
compute recursively L′ =

∑∑∑
(L) and R′ =

∑∑∑
(R).

∙ Notice that since the sets L′,R′ ⊆ J0 : σK, we can compute L′ ⊕ R′ in
O(σ logσ) time via FFT.

∙ Since the divide-and-conquer recursion has logn levels, we get
the O(logn(σ logσ)) promised running time.
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long and heavy

Lemma [Long and Heavy]. Given a set S ⊆ Jx : x+ ℓK of size n,
computing the set

∑∑∑
(S) ∩ J0 : uK takes Õ((u/x)2ℓ) time.

Proof Sketch.
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long and heavy

S
x x+ ℓ
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long and heavy

L R

∑∑∑
(L)

∑∑∑
(R)

δ

Step 1

x x+ ℓ
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long and heavy

∑∑∑
(L),

∑∑∑
(R)

∈

z = ix+ j

Step 2
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long and heavy

f
!0:k"×!0:ℓk"(i, j) ∈

∑∑∑
(L),

∑∑∑
(R)

∈

z = ix+ j

Step 2
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long and heavy

f

but shorter

Higher #

f
(

∑∑∑

(L)
)

f
(

∑∑∑

(R)
)

dimensions

intervalsf
!0:k"×!0:ℓk"(i, j) ∈

∑∑∑
(L),

∑∑∑
(R)

∈

z = ix+ j

Step 2

18



long and heavy

⇒

f
(

∑∑∑

(L)
)

⊕ f
(

∑∑∑

(R)
)

FFT in Õ(ℓk2)

f
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f
(
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(L)
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f
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(R)
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long and heavy
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(L ∪R)
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f
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long and heavy
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long and heavy

and if k =

⌊
u

x

⌋
=⇒ Õ

((
u

x

)2

ℓ

)
.

∑∑∑
(S)

=

f−1∑∑∑
(L ∪R)

⇒

f
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∑∑∑
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f

but shorter

Higher #

f
(

∑∑∑

(L)
)

f
(

∑∑∑

(R)
)

dimensions

intervalsf
!0:k"×!0:ℓk"(i, j) ∈

∑∑∑
(L),

∑∑∑
(R)

∈

z = ix+ j

Step 2

22



the algorithm

S

u1
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the algorithm

S0 = S ∩ !1 : r0"

Si = S ∩ !ri−1 + 1 : ri"

r0 ≥ 1

ri = ⌊2ir0⌋

|Si| = ni

S0S1 S2 S3 S4 S5

r0 r1 r2 r3 r4

O(log u) intervals

S

u1
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the algorithm

S0

r01

S

u1
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the algorithm

Õ(n0r0) = Õ (min{n, r0}r0)

in

Short and Light

⇓
∑∑∑

(S0)

S0

r01

S

u1
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the algorithm

ri−1 ri

Si

S

u1
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the algorithm

⇓

Long and Heavy

∑∑∑
(Si)

in

Õ

((
u

ri−1

)2

ℓi

)
= Õ

(
u2

ri−1

)

ri−1 ri

Si

S

u1
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the algorithm

⇓

Long and Heavy

∑∑∑

(Si)

in

Õ

((
u

ri−1

)2

ℓi

)
= Õ

(
u2

ri−1

)

ri−1 ri

Si

S

u1

=⇒ Õ

(

u2

r0

)

for all intervals
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the algorithm

r0 r1 r2 r3 r4

log u⊕

i=0

∑∑∑
(Si) ∩ !1 : u" =

∑∑∑
(S) ∩ !1 : u"

O (log u(u log u)) = Õ(u)

⇓

S

u1
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the algorithm

In total time: u1

Õ

(
min{n, r0}r0 +

u2

r0
+ u

)

r0 =

u

√

n

r0 = u
2/3

S ❀

∑∑∑

(S) ∩ !1 : u"

Õ
(
√

nu

)

Õ
(

u
4/3

)
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the other algorithm

The second algorithm solves the all subset sums problem modulo m
in finite cyclic groups; i.e., it returns all realizable sums within the
group.

The second algorithm runs in Õ
(√
nm

)
time, where m is the order of

the group.

Not trivial!
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the other algorithm

The challenge is that the previous algorithm throws away many sums
that fall outside of J1 : uK during its execution, but this can no longer
be done for finite cyclic groups, since these sums stay in the group
and as such must be accounted for.
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future work



open problems

Can we use these observations on other similar number-based
problems?

Is there a deterministic Õ(t) time algorithm for the subset sum
problem matching its conditional lower bound?
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Thank you
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