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Abstract. The Partner Units Problem is a challenging combinatorial search prob-
lem that has applications in the domains of security and surveillance. In this work
we look at problem-specific implied constraints, search strategies and symmetry
breaking approaches. We discuss the modelling and solving techniques offered by
SAT solvers and answer set programming on the one hand, and constraint solvers
on the other hand.

1 Introduction

In this work we revisit the Partner Units Problem (PUP), a graph partitioning problem
with applications in the areas of security and traffic monitoring [10]. Informally the PUP
can be described as follows: Consider a set of sensors that are associated to zones. A
zone may contain many sensors, and a sensor may be attached to more than one zone.
The PUP then consists of connecting the sensors and zones to control units, where
each control unit can be connected to the same fixed maximum number UnitCap of
zones and sensors.1 Moreover, if a sensor is attached to a zone, but the sensor and the
zone are assigned to different control units, then the two control units in question have
to be directly connected. However, a control unit cannot be connected to more than
InterUnitCap other control units (the partner units).

Formally, the PUP consists of partitioning the vertices of the bipartite instance graph
G = (S,Z, E) into a set U of bags such that each bag

– contains at most UnitCap vertices from S and Z each; and
– has at most InterUnitCap adjacent bags, where the bags U1 and U2 are adjacent

whenever s ∈ U1 and z ∈ U2 and (s, z) ∈ E.

To every solution of the PUP we can associate a solution graph. For this we as-
sociate to every bag Ui ∈ U a vertex vUi

. Then the solution graph G∗ has the ver-
tex set S ∪ Z ∪ {vUi | Ui ∈ U} and the set of edges {(v, vUi) | v ∈ Ui ∧ Ui ∈
U} ∪ {(vUi , vUj ) | Ui and Uj are adjacent.}. In the following we will refer to the sub-
graph of the solution graph induced by the vUi

as the unit graph. Throughout this paper

? Work and cooperation with Siemens Austria funded by FFG FIT-IT Grant 825071 (Klagenfurt)
and EPSRC Grant EP/G055114/1 (Oxford).

1 For ease of presentation and without loss of generality we assume that UnitCap is the same for
zones and sensors.



assume InterUnitCap ≥ 2; for InterUnitCap ∈ {0, 1} the problem is similar to classical
bin-packing [22]. We also assume the underlying instance graph G to be connected.

We are especially interested in finding solutions that use a minimum number of
units — the rationale behind this optimisation criterion is that (a) units are expensive,
and (b) connections are cheap. This problem can be recast as a decision problem: Is
there a solution with a specified number of units?

The problem is NP-complete if InterUnitCap = 0 and UnitCap are part of the
input [2]. In the same work it has been shown that the case where InterUnitCap = 2
and UnitCap = k is tractable for fixed k via the NLOGSPACE algorithm DECPUP.
Intuitively, this case is easier because the unit graph can be fixed to a simple cycle.
The complexity of the case where both InterUnitCap and UnitCap are arbitrary fixed
constants is still unknown. But it can be shown that the problem is tractable for instance
graphs of bounded treewidth and suitably restricted choices for the sensor and zone
assignments [22].

The minimum number of units needed for a solution is lb = dmax (|S|,|Z|)
UnitCap e. If

InterUnitCap = 2 a solution using at most max (|S|, |Z|) units can be found if one
exists. If InterUnitCap > 2 the best such bound known is the trivial |S|+ |Z| [2].

In [1] basic encodings of the PUP as SAT, CSP, integer and answer set programming
(ASP) have been presented and evaluated. Both the DECPUP algorithm and the integer
programming encoding did not perform well.

In this work in Section 2 we identify problem properties that may help prune the
search space. Then in Section 3 we look at search strategies and in Section 3.3 we
address symmetry breaking. Next in Section 4 we present our experiments with CDCL-
solvers, local search and classical constraint solvers. Finally, in Section 5 we conclude.

2 Implied Constraints

The following problem properties may help prune the search space.

2.1 Shared Neighbours

If two vertices share a neighbour in the instance graph, then their respective units have a
maximum distance of two in the unit graph. For a higher number of shared neighbours
a stronger condition holds:

Proposition 1 (Common Neighbours). If two vertices v1 and v2 of the instance graph
have n ≥ (InterUnitCap ∗UnitCap)+1 common neighbours then in the solution graph
they will be in the same unit or in directly connected units.

Proof. Assume to the contrary that v1 and v2 are assigned to some units U1 and U2

that have distance two. Now all their common neighbours have to be assigned to units
between U1 and U2. However, there can not be more than InterUnitCap units between
U1 and U2, and hence the common neighbours won’t fit.



This result is not very strong as in solvable instances any two vertices can share at
most (InterUnitCap + 1) ∗UnitCap neighbours.2 But let InterUnitCap = 2 and assume
furthermore |S| > 4 ∗ UnitCap or |Z| > 4 ∗ UnitCap: Then the solution contains at
least five units and there can be at most one unit between the units that v1 and v2 are
assigned to. Thus v1 and v2 have to be on the same unit or on directly connected units
if they share at least UnitCap + 1 neighbours.

2.2 Cyclic Solutions

If InterUnitCap = 2 and the instance graph contains a cycle of a certain length then the
unit graph is cyclic and of bounded length.

Proposition 2 (Cycle Property). If the instance graph contains a cycle of length n,
where n > (4 ∗ UnitCap), then the unit graph of the solution is cyclic of length m with
d n

2∗UnitCape ≤ m ≤ n.

Proof. Observe that a cycle of length n > (4 ∗ UnitCap) in the input graph requires at
least three units in the unit graph. Hence the unit graph has to be cyclic as otherwise
the Partner Units condition would be violated. Now let us go through the bounds of m:
(m ≤ n) In a unit graph of length n each unit contains only one vertex from the cycle
— this is the longest we can stretch the cycle. (d n

2∗UnitCape ≤ m) This is the smallest
number of units that the vertices on the cycle fit on.

Assume an instance contains cycles of length n1 and n2 such that n1 < d n2
2∗UnitCape.

We can use at most n1 units and need at least d n2
2∗UnitCape: The instance is unsolvable.

2.3 Maximum Joint Vertex Degree

Instances that contain a vertex of degree d > (InterUnitCap + 1) ∗UnitCap are unsolv-
able [2]. Assume that during search we have assigned sensors to some unit that together
have more than (InterUnitCap+1)∗UnitCap adjacent zones: Such a partial solution can
never be extended to a full solution. This idea generalises to cliques of units: Given a
clique of size 1 ≤ n ≤ InterUnitCap+1 in a unit graph, each of the clique elements has
n − 1 partner units in the clique, so that the number of partner units outside the clique
is at most InterUnitCap − (n − 1). That is, the number of the clique elements’ partner
units cannot exceed n ∗ (InterUnitCap− (n− 1)) + n = n ∗ ((InterUnitCap + 2)−n).

Proposition 3 (Maximum Joint Vertex Degree (MJVD)). If a partial solution con-
tains a clique of units of size n, then the sensors (or zones) assigned to the clique
elements must not have more than [n ∗ ((InterUnitCap + 2) − n)] ∗ UnitCap adjacent
zones (or sensors).

Cliques of size n = 1 (a vertex) and n = 2 (an edge) have a simple structure,
making them good candidates for the exploiting the MJVD. Of all the implementations
described in [1] only the DECPUP algorithm catches a violation of MJVD for single
units; note that such a violation cannot occur on the benchmarks from [1].

2 If they do they have to be assigned to the same unit.



3 Search Strategies

Next we look at search strategies for the PUP.

3.1 Strategies for Finding Optimal Solutions

In [2] two basic strategies for finding optimal solutions have been proposed:

(1) Make a model that contains upper bound many units and try to maximise the num-
ber of empty units (real optimisation).

(2) Start with lower bound many units; if no solution can be found increase the number
of units by one (iterative deepening search).

Strategy (2) has been very successful: Solvable instances typically have solutions
with lower bound many units; only on crafted instances does this not hold. Moreover,
the known upper bounds (cf. Section 1) are very weak (they do not depend on UnitCap).

Here we propose the following hybrid optimisation strategy (3): Start with (2) for
lower bound many units. If that fails the instance probably has no solution. Via (1) we
can prove this or find an optimal solution in one step instead of many steps using (2).

3.2 Variable Orderings

Good variable orderings are known to be crucial for the performance of CP solvers. But
they can also be used for static symmetry breaking (see below).

A basic idea is to order the variables corresponding to sensors and zones such that
each but the first variable is connected in the instance graph to a predecessor in the
ordering. This can e.g. be done by a greedy algorithm that (1) fixes one sensor and
(2) at each step picks all vertices that are adjacent to already ordered vertices but not
yet part of the ordering. For InterUnitCap = 2 this variable ordering (called adjbfs
below) resulted in very good performance for the CSP-encoding in [1].

Next assume an instance contains more sensors than zones: It should be easier to fit
the zones into the gaps after assigning the sensors than the other way around.

Then there are two fundamental ideas underlying variable orderings in general: Ei-
ther try to find a most-constrained variable that is likely to lead to failure soon or try
to find a variable that activates as many new constraints as possible. The former goal is
called contention and the latter simplification in [33].

The following variable orderings are variations on the above ideas:

– First fix all sensors, then all zones (sensorszones), or the other way around
(zonessensors).

– Pick a zone, pick all adjacent sensors, pick an adjacent zone, etc. (topological).
– Pick the vertex that has the most connections to already ordered vertices, use the

degree of the vertices as a tie-breaker (maxadjdeg).
– Pick an adjacent vertex with max-degree, use the greater number of connections to

already ordered vertices as a tie-breaker (maxdegadj).
– The same as maxdegadj, but prefer the least number of connections to already

ordered vertices (maxdegminadj).
– Simply order the vertices according to their degrees(maxdeg,mindeg).
– Use a random ordering (random).



3.3 Symmetry Breaking

The PUP exhibits a lot of symmetry. Symmetry breaking is of great practical importance
for unsolvable instances and also in subtrees of the search tree that contain no solutions.

Assigning Sensors and Zones to Units First we can do symmetry breaking by re-
stricting the possible assignments from sensors and zones to units. This can be done in
a static and in a dynamic way.

(Statically) For InterUnitCap = 2 in combination with iterative deepening search
symmetry can be broken by (1) assigning some vertex to unit one and (2) enforcing that
some other vertex appears on the first half of the cycle formed by the units [1].

For the case of InterUnitCap > 2 in [1] the following idea has been proposed:
Sensor one has to be on some unit, say unit one; sensor two might be on the same unit
or a fresh one, say unit two; and so on. If we have |S| + |Z| units at our disposal this
static symmetry breaking method can cover all sensors and zones.

(Dynamically) We can do dynamic symmetry breaking via a precedence ordering:
For some orderings of (1) the units and of (2) the vertices from S ∪ Z , whenever vi is
assigned to Uj , enforce that vk, k < i is assigned to unit Ul, l ≤ j.

Connecting Units to Units Instead of breaking the symmetry on (sensor-or-zone)-to-
unit-connections we can also do it on unit-to-unit-connections.

(Statically) Static symmetry breaking analogous to the idea proposed for sensor/zone-
to-unit assignments results in very weak symmetry breaking.

(Dynamically) If we use a problem model that might contain more units than actu-
ally needed we can disallow “gaps”: For some ordering of the units U1 to Un require
that all Ui, i < m are non-empty if Um is non-empty [1]. This can safely be combined
with the static symmetry breaking on sensor/zone-to-unit-connections.

Dynamic symmetry breaking can also be achieved by a stair function of units that
are tabu as partners: After the first unit not connected to U1 no later unit can be con-
nected to U1; after the first later unit not connected to U2 unit U2 is disallowed; etc.

In many models a NoOfUnits× NoOfUnits matrix of Boolean variables represents
the inter-unit connections (every unit is connected to itself). Here we can require that
Rowi is lexicographically greater than or equal to Rowi+1 for i = 1..NoOfUnits− 1.

These last two proposals cannot safely be combined with static symmetry breaking
on sensor/zone-to-unit-connections.

4 Encodings

In this section we study the strengths and weaknesses of contemporary solving method-
ologies on the Partner Units Problem. In particular we look at

– CDCL-solving on propositional problem representations; and
– constraint propagation in combination with programmable search.



We include lazy clause generation in constraint propagation, although technically it
is a combination of the above two approaches.

As discussed in Section 3.1 instances are typically either solvable using lower bound
many units or unsolvable. Hence, even though we are interested in optimal solutions,
the PUP is more of a search than an optimisation problem. This is one of the reasons
why integer programming is not among the approaches considered.

In the sequel, we discuss how the different frameworks offer different search al-
gorithms for the PUP: Which variables are selected for branching, whether there is
a variable/value ordering and which choices lead to the propagation of new informa-
tion. Then most constraints in the PUP are about counting up to some fixed threshold
(UnitCap, InterUnitCap). So we look at the overarching question of how the counting
is done in the different frameworks.

4.1 The Instances

We have evaluated our encodings on a set of benchmark instances that we received
from our partners in industry, including the instances used in [1]. Let us describe in
some detail the structure of our instances. In all of our instances UnitCap = 2 and there
are more sensors than zones. All instances are built atop an underlying grid of rooms.3

The double-family of instances for InterUnitCap = 2 is built from two rows of
rooms stacked on top of each other; cf. Figure 1. Each room is a zone and is connected
to all sensors on its boundary; there are sensors on all doors. The length of the rows
increases with problem size. In the doublev-* instances the columns are zones, too; in
the doublehv-* instances there are overlapping zones of size three (cf. Figure 1).

Fig. 1. The basic layout of the various double-* instances

The n4triple-* instances for InterUnitCap = 4 are built from blocks depicted in Fig-
ure 2: A grid-like layout with exits to the north and south at the corners. The northern-
and southernmost rows are connected, whereas in the interior of the grid most east-west
connections are blocked. The actual instances consist of multiple such blocks stacked
on top of each other. There is a sensor on every door and each room is a zone. There are
larger zones consisting of two to six adjacent rooms, growing from the boundary of the
grid. In the n4triplemjvd-* instances the overlapping zones are of size eight to eleven.
Again, each zone is connected to all sensors that lie on its boundary.

3 The benchmarks and all encodings will be made publicly available.



The triple-* instances from [1] are like the n4triple-* instances, only that the interior
walls have no holes and there are fewer overlapping zones. Smaller triple-* instances
with few overlapping zones are solvable for InterUnitCap = 2 as they do not violate
the cycle property described in Section 2.2.

We use the hand-crafted n4triplemjvd-* and doublehv-* instances to test the MJVD
property and the shared-neighbours condition from Proposition 1. Both properties do
not appear in our other instances.

Fig. 2. The basic building blocks of the n4triple-* instances

Finally, concerning the different search strategies described in Section 3.1: All of
our benchmarks are unsolvable or require only lower bound many units. Hence, if
InterUnitCap > 2, the combined strategy (3) is always fastest: The search steps in
(3) are identical to the first and last step of (2).

4.2 Implied Constraints
In Section 2 we have identified a cycle property for InterUnitCap = 2, a common neigh-
bours property and the maximum joint vertex degree (MJVD) as implied constraints for
pruning the search space.

The cycle property is difficult to automatically check for. However, we could use
it to show that none of the n4triple-8 instances can be solved with InterUnitCap = 2
(cf. Section 4.1 above). The common neighbours property does not show in most of
our benchmarks. Where it does show for all solvers the small gain is neutralised by
the small overhead of checking the condition: If two nodes share one neighbour in the
instance they have a maximum distance of two in the solution; if they share sufficiently
many neighbours that distance is reduced by one. This leaves the MJVD as the sole
implied constraint with some promise.

4.3 The Matrix of Inter-Unit-Connections
If no fixed cyclic layout of the units is assumed the inter-unit-connections have to be
modelled as variables. This is done via a matrix of Boolean variables UUij correspond-
ing to a connection from unit i to unit j, where we may assume a unit to be connected



to itself. In all the encodings presented in [1] this matrix is symmetric, i.e. we have
UUij = UUji. Here an obvious improvement is to fold the matrix along the diagonal.

4.4 Conflict Driven Clause Learning Solvers

We next look at conflict driven clause learning (CDCL) solvers on ground propositional
problem representations. In particular we look at encodings of the PUP in answer set
programming and SAT.

Modern CDCL solvers work on a propositional ground problem representation via
clauses, i.e. disjunctions of (possibly negated) Boolean variables. For inference they
use unit-propagation: If the truth value of a variable is known all occurrences of its
complement are removed from all clauses [7]. Clause learning [27] incrementally adds
clauses to the problem representation that are sufficient to explain a conflict discovered
during search. Learnt clauses allow the solver to backtrack over multiple levels of the
search tree in one step (“backjumping”). The technique of watched literals ensures that
a clause is only selected for propagation once all but one literals are instantiated [24].
CDCL solver mostly differ with regard to the heuristics they employ for selecting vari-
ables, deletion of learnt clauses, branching, etc. These parameters can be improved for
specific problem classes via automatic parameter tuning.

Answer set programming differs from plain SAT in that it

– offers a rich modelling language via logical rules that are automatically grounded;
and

– performs minimal model reasoning only whereas SAT consider all classical models.

Propositional Satisfiability Testing A main challenge in developing propositional en-
codings of the PUP in plain SAT is the representation of atmost constraints in order to
impose upper bounds (UnitCap, InterUnitCap and, possibly, MJVD thresholds). In the
SAT encoding presented in [1] the constraint that each sensor/zone is assigned to at most
one unit was encoded “naively”:

∧
¬vUi∨¬vUj , where vUi means sensor/zone v is on

unit i. The other atmost constraints were encoded using Sinz’ sequential counter [30].
While the number of clauses in this naive encoding is, in general, exponential in the up-
per bound k, Sinz’ sequential counter provides a representation with O(nk) clauses.4

We now have four direct SAT encodings in total, varying in whether naive encoding or
Sinz’ sequential counter is used for atmost constraints and in whether inter-unit con-
nections are represented symmetrically or not.

We have used these encodings for experiments with Stochastic Local Search (SLS)
methods for solving the PUP; for this we have used the UBCSAT 1.1 [31] solver. How-
ever, contrary to CDCL-solvers, SLS algorithms could not find a single solution for
these encodings within the given time-frame. These results are in line with chapter
2.3.4 of [5] where it is argued that SLS performs poorly on SAT problems with a lot of
variable interaction.

It has been convenient to use ASP for encoding the advanced PUP conditions propo-
sitionally; CDCL-solvers on the above SAT encodings are evaluated below, together
with these advanced ASP encodings.

4 A survey on and evaluation of different SAT encodings of counting up to k can be found in [12].



Answer Set Programming Problems are represented in ASP as a combination of data,
describing an instance in terms of ground facts, and a uniform first-order encoding,
invariant under instances. Solutions are then computed in two phases, first, (determinis-
tically) grounding the encoding w.r.t. data and, second, (non-deterministically) search-
ing for particular models, so-called answer sets [16], of a propositional logic program
obtained in the first phase. Below we use the grounder GRINGO [14] and the solver
CLASP [15]. Automated grounding allows us to rapidly develop encoding variants, and
CLASP performs CDCL-style search on the propositional level.

Our ASP encoding makes use of atmost constraints for enforcing the upper bounds
given by UnitCap, InterUnitCap and MJVD thresholds; traditionally these constraints
are called “cardinality” constraints [29] in ASP. Native ASP solvers implement prop-
agators for such constraints, which makes a compilation to simpler constructs such as
SAT clauses unnecessary. In particular, CLASP applies a generalised form of unit prop-
agation to such constraints and lazily extracts clauses upon conflict resolution [13].

In our ASP encoding of the PUP the following features are configurable via command-
line switches of GRINGO:

MJVD Dynamic checks of this condition can be activated independently for cliques of
size one (vertices) and two (edges) in the unit graph. To this end, predicates for iden-
tifying the zones (or sensors) connected to the sensors (or zones) in a single unit or a
pair, respectively, are introduced in the grounding phase and evaluated w.r.t. partial as-
signments constructed during search. Moreover, dedicated counting constraints similar
to those for checking UnitCap and InterUnitCap, are posted in the grounding phase to
enforce that the threshold from in Proposition 3 is not exceeded.

Symmetry Breaking Each of the approaches described in Section 3.3 can optionally
be activated. For InterUnitCap = 2 the unit graph is fixed to a cycle by asserting the
existence of respective edges (in the grounding phase). Restrictions on the assignment
of sensors and zones to units rely on a variable order (cf. Section 3.2) provided as part
of an instance. Static restrictions are applied in the grounding phase by limiting the
range of units to which a sensor or zone can be assigned; the condition that there are
no gaps between assigned units is dynamically checked during search. Furthermore,
our encoding offers (dynamic) restrictions on inter-unit connections: Step-wise recog-
nition and exclusion of tabu partner units has an easy implementation (just four lines in
our encoding). Symmetry breaking by ordering whole the rows in the matrix of inter-
unit-connections is stronger and guarantees a unique representation of isomorphic unit
graphs. This can further be strengthened by requiring that the variables assigned to units
with identical rows to be in order, and our encoding also offers this optional extension.

Empirical Evaluation Let us now turn to the empirical evaluation of our ASP encod-
ing. Automated translations from ASP to SAT via LP2SAT2 [20] allow us to run SAT
solvers on CNF formulas that are semantically equivalent (modulo auxiliary variables)
to the grounded propositional ASP programs. As our programs do not involve positive
recursion (implication cycles via positive preconditions and consequents) they can be
translated to SAT via a linear translation [9], known as Clark’s completion [6]. The



main hurdle is the compilation of atmost constraints into clauses. LP2SAT2 offers four
different compilations for this purpose: adder circuit, binary counter, counting grid, and
Sinz’ sequential counter [20].

In our experiments we use CLASP (version 2.0.4), LINGELING [4] (version 587f),
and MINISAT [8] (version 2.2.0). Furthermore, we used GRINGO (version 3.0.3) for
grounding and LP2SAT2 (version 1.15) for converting ground logic programs to CNF.
Runtime results provided below exclude grounding and translation to SAT, which were
accomplished offline.

LINGELING and MINISAT are plain SAT solvers whereas CLASP can be run both
as an ASP solver (on GRINGO output) and as a SAT solver (on LP2SAT2 output).
For CLASP, we switched from its default BerkMin-like decision heuristic (cf. [18]) to
VSIDS (cf. [3]) which is also used by LINGELING and MINISAT; the latter heuristics
works better on the PUP for InterUnitCap > 2 [1]. We switched off occasional random
decisions in LINGELING to ensure reproducible behaviour.

For assessing encoding options we divide the instance families described in Sec-
tion 4.1 into the following three groups: The polynomially solvable “N2”, “N4Triple”
instances, and finally “N4TriplesMJVD”. We consider the following encodings:

– the two “legacy” encodings for InterUnitCap = 2 and InterUnitCap > 2 from [1];
– the “plain” new encoding without symmetry breaking and MJVD checks and its

“ring” variant for InterUnitCap = 2; and
– SAT-encodings generated from “plain” via LP2SAT2.

For “plain” we consider variants checking MJVD for cliques of size one and two
and the different combinations of static and dynamic symmetry breaking.

Assuming a fixed cyclic unit graph as in “legacy” and “ring” proved far more effec-
tive on “N2” than any other method. “Ring” improves on “legacy” in that it does not
include both directions for the edges between units.

Checking MJVD for single units introduced only little overhead for “N4Triples” and
“N4TriplesMJVD”; it only really helped on the latter instances. Checking the condition
for pairs of units had detrimental effects.

Static symmetry breaking always helped. Of the various variable orderings that
could be used for this maxadjdeg and maxdegadj performed best. We observe
that disallowing “gaps” in the sequence of units throughout search hurt performance
on “N4Triples” whereas it helped on “N4TriplesMJVD”.

Using MJVD, a folded inter-unit-connection matrix and appropriate symmetry break-
ing the new ASP encoding can solve one-and-a-half as many instances as “legacy” in a
quarter of the time.

We have then tested plain SAT encodings obtained via LP2SAT2 from

– “ring” for “N2”;
– MJVD on single units plus maxdegadj for “N4Triples”; and
– the same plus disallowing gaps for “N4TriplesMJVD”.

We have run CLASP on these encodings where it internally compiles atmost con-
straints to Sinz’ sequential counter. This also was clearly the best of the various en-
codings of atmost constraints available in LP2SAT2. On “N2” the differences between



the different solvers were not very significant, with LINGELING having slightly the
edge. On “N4TriplesMJVD” CLASP was the clear winner, either run on the output of
LP2SAT2 or internally compiling the atmost constraints; on “N4Triples” CLASP was
again the clear winner, but only on the output of LP2SAT2.

On “N4Triples” CLASP using a propagator instead of Sinz’ sequential counter was
about four times faster; on “N4TriplesMJVD” the effect was less pronounced, but
CLASP was still in front.

Our attempts to further improve CLASP via PARAMILS [19], i.e. parameter tuning
via local search on CLASP’s configuration space, did not bear any fruit. Overall, CLASP
in its default configuration using VSIDS instead of Berk-Min using the “plain” encoding
extended by MJVD and suitable symmetry breaking is our recommended approach to
solving PUP instances where InterUnitCap > 2.

We have also run CLASP, MINISAT and LINGELING on a relatively small set of
instances using the different crafted SAT encodings described above: Interestingly, here
using a non-folded, symmetric matrix helped all solvers. This contrasts starkly with
ASP where, due to minimal-model reasoning, a symmetric matrix incurs a relatively
expensive well-foundedness check.

In [28] it has been shown that a CDCL SAT solver can become faster by ignoring
the auxiliary variables from Sinz’ encoding of “at most one” constraints; we have also
tested their modified version of MINISAT (version 2.0). However, the auxiliary vari-
ables from “atmost one” constraints constitute only a very small part of a SAT-encoded
PUP instance and our results were inconclusive. We have also considered crafted in-
stances with InterUnitCap = 2 and UnitCap = 1 — i.e. all counting is up to one. These
instances, however, are too easy to solve for meaningful conclusions.

Search Strategies For InterUnitCap = 2 the search strategy () from Section 3.1 worked
best: Assuming a fixed cyclic unit graph (does not) provide enough additional informa-
tion to outperform an encoding using general symmetry breaking methods. As all our
instances are either unsolvable or solvable using lower bound many units the support
available in CLASP for optimisation does not help.

4.5 Constraint Programming

In this section we first look at counting constraints in CP. We then discuss our various
basic models for the PUP. We have modelled the problem for the solver MINION [17]
and in the MINIZINC modelling language [25], in order to use the FDX lazy clause gen-
eration solver [11]. We still consider the basic model from [1], written in ECLiPSe [32].

In Constraint Programming (CP) [26] a problem is represented via variables with
discrete finite domains. The constraints specify which combinations of values can be
used together. Compared with the explicit ground propositional representation em-
ployed by CDCL solvers a constraint solver maintains an implicit problem represen-
tation. If the domain of a variable shrinks during search then the constraint solver tries
to propagate changes to the domains of other variables occurring in the same con-
straint. The propagation algorithm used depends on the semantics of the constraint;
often there are multiple competing propagation algorithms for the same constraint. The
order in which variables and values are selected for instantiation is usually programmed



by hand. These orderings are well known to have a drastic impact on the time needed
to find a solution.

MINION is a modern pure CP solver aiming at raw propagation speed and incor-
porating suitably adapted watched-literal techniques from SAT solvers. ECLiPSe is an
older Constraint Logic Programming (CLP) system, i.e. the constraint solving is embed-
ded in a Turing-complete logic programming environment. MINIZINC is a high-level
problem specification language that is automatically transformed into low-level input
for a number of CP solvers. In FDX a CDCL SAT solver is embedded into a classical
constraint solver. The CP solver translates explanations for the propagations it has made
into SAT clauses and incrementally (lazily) adds these clauses to the SAT representation
of the problem. It then exploits clause learning and backjumping available in the SAT
solver to prune the search space it considers.

Classical Constraint Programming We first consider classical constraint program-
ming in ECLiPSe and MINION, i.e. without the no-good learning capabilities of lazy
clause generation.

Counting in Constraint Programming There are three natural candidates for modelling
the counting needed for the PUP in CP:

– An atmost(n, vars, val) constraint enforces that at most n variables take the fixed
value val, where n is fixed.

– An occurrences(val, vars, var) constraint enforces that the number of occurrences
of the fixed value val in vars is in the domain of the variable var.

– A global cardinality constraint gcc(vars, vals, cvars), where vals and cvars are vec-
tors of the same length, enforces that vali occurs cvari times in vars. Here vali is
fixed, but cvari may be a domain variable.

Basic Model for InterUnitCap = 2 We ported our ECLiPSe model directly to MINION.
The units form a ring (1, 2, . . . , NoOfUnits, 1), and we use iterative deepening on their
number. For each sensor and zone we introduce a variable with domain 1..n. We post
constraints atmost(m,S, i), for m = UnitCap and all 1 ≤ i ≤ n, and repeat the
same for zones. For each connection (s, z) we introduce a variable sz with domain
{−(NoOfUnits − 1),−1, 0, 1, (NoOfUnits − 1)} and post a constraint s − z = sz.
Using the same symmetry breaking and variable ordering as in ECLiPSe MINION is
two to three orders of magnitude faster.

Basic Model for InterUnitCap > 2 The modelling of sensors and zones as unit-
valued variables and the UnitCap-constraints are as before. Using a single gcc con-
straint in MINION proved superior to multiple atmost constraints — gcc is not available
in ECLiPSe. The InterUnitCap constraints are posted as atmost constraints on the ma-
trix of Boolean variables representing the inter-unit-connections. Folding the matrix did
not have significant effects in ECLiPSe whereas in MINION a non-folded matrix is two
to three times slower.

The following is an interesting difference between the two CP models with regard
to the handling of connections between units. In ECLiPSe we have written a custom
propagator that behaves as follows:



– If either s or z is assigned to Ui (say s is) then for every value v in the current
domain of z during search we add the hand-coded constraint UUiv = 0⇒ z 6= v.

– This constraint UUiv = 0 ⇒ z 6= v is checked only when UUiv is instantiated —
changes to the domain of z cannot result in new information.

– If both s and z are assigned the respective Boolean is set.

In MINION we have tried the following two encodings:

(1) Post constraints ((s− 1)× NoOfUnits) + z = i and element(matrix, i, 1).
(2) Write the map from units to matrix indices as a tuple list sztuple = (Unitk, Unitl, i),

all k, l, and then post constraints table([s, z, i], sztuple) and element(matrix, i, 1).

Approach (2) avoids the expensive propagation associated with the arithmetic in
approach (1). Contrary to ECLiPSe in both approaches shrinking a variable domain
without instantiating it also leads to a propagator being woken. Due to the more eco-
nomical model used ECLiPSe has the edge over MINION.

Symmetry Breaking Let us now look at symmetry breaking:
InterUnitCap = 2 Here we fix one sensor to be on the first unit and some other

sensor to be on the first half of the cycle.
InterUnitCap > 2 The lexicographic symmetry breaking described in Section 3.3 is

straightforward in the CSP model, given that the connections between units are speci-
fied by a (folded-up version of) a NoOfUnits×NoOfUnits matrix of Boolean variables.
Advanced methods for symmetry breaking on Boolean matrices are described in [21]
and [34]. With the basic lexicographic method we can solve e.g. triple-34 that can-
not be solved without symmetry breaking. However, there is a lot of negative interaction
with the search strategy on instances that are otherwise easily solvable.

If we instead restrict the units that sensors and zones can be assigned to no such neg-
ative interaction can occur. Static restrictions are straightforward to implement. Strong
dynamic symmetry breaking on the assignment of sensors and zones to units could be
achieved by the global constraints described in [23] — however, these constraints are
not available in MINION and ECLiPSe. We used multiple ≤ constraints between pairs
of variables instead which results in weaker propagation. The strength of the symme-
try breaking strongly depends on the chosen variable orderings. Dynamic symmetry
breaking hurt performance whether used as a stand-alone or in combination with static
symmetry breaking, whereas static symmetry breaking always helped.

Variable Orderings Let us now look at the merits of the various proposed variable
ordering heuristics for CP.

InterUnitCap = 2: As the adjbfs variable ordering yielded good results for CP,
one might have expected even better results using more refined adj orderings. This,
however, was not the case: With adjbfs MINION could solve a double-3000 in 85
seconds, whereas most other adj orderings reported a time-out on double-100. Of the
different variable orderings from Section 3.2 adjbfs worked by far the best.

This can be explained as follows: Call a variable ordering non-decomposing if for
no sub-sequence of the ordering the instance graph minus the sub-sequence decom-
poses into multiple connected components. Call it almost-non-decomposing if for every



subsequence all but one of the remaining components contain only a single vertex —
consider e.g. an overlapping zone that is preceded in the ordering by all of its sensors.

On our instances the adjbfs ordering always starts from a corner of the under-
lying grid (that is where sensor one is). If the instance contains overlapping zones it
is almost-non-decomposing, and non-decomposing otherwise. For various reasons the
other orderings frequently decompose the instance graph into several large components,
interleaving vertices from different remaining components in the ordering. Now the
standard increasing value ordering frequently assigns vertices from different remain-
ing components to the same units. This in turn leads to frequent failures because of too
many neighbouring sensors and zones. Whether adjbfs is non-decomposing crucially
depends on the first node chosen — after permuting the vertex names in the instance
graph MINION with adjbfs will time-out on double-40.

Note that on general instance graphs almost-non-decomposing orderings do not al-
ways exist. Our bipartite graphs are obtained from grid-like instances where overlap-
ping zones are contiguous. Here walking the columns (or rows) and adding overlapping
zones when all sensors have been covered yields an almost-non-decomposing ordering.
Empirically row- or column-wise orderings perform as well as adjbfs.

InterUnitCap > 2: Here results were less conclusive. Assigning the inter-unit-
connections before the sensors and zones is hopeless; doing it the other way around
is quite good already. In our experiments we used the same variable ordering for both
search and symmetry breaking. maxdeg, mindeg, zonessensors,5 and random
were hopeless; maxdegminadj did better but still bad. Instance-specific (almost-)-
non-decomposing variable orderings did not do particularly well. With the exception of
sensorszones all good variable orderings follow the topology of the instance graph.

The best ordering we found was maxadjdeg with inter-unit-connection variables
interspersed every n steps, where n is a little less than 2 ∗ UnitCap. Setting inter-unit
variables to “false” before “true” worked slightly better. We have not been able to iden-
tify a strikingly superior variable ordering as in the case of InterUnitCap = 2.

Search Strategies We have evaluated the search strategies described in Section 3.1 for
InterUnitCap = 2: Pure iterative deepening (2) is fastest even on unsolvable instances.

Maximum Joint Vertex Degree Assume we use iterative deepening search. Now for
InterUnitCap = 2 and a connection (s, z) with s assigned we know the three possible
positions z can take. Hence in MINION we can identify the MJVD for single units by
posting single gcc constraints on the vectors of sensors and zones, respectively, instead
of multiple atmost constraints. On most instances MJVD does not show and runtimes
double because of the more expensive propagation.

Next consider the case of InterUnitCap > 2. In the pure CSP framework of MINION
we introduce for every unit U Booleans Us for every s ∈ S and Uz for Z respectively.
These vectors represent the sensors/zones that have to be placed on a unit or its neigh-
bours. Assume Zs is the set of neighbours of a sensor s. We post reified constraints
reify(s = U, SU ) and reifyimply(watched-and({Uz = 1}), SU ) for all z ∈ Zs, and

5 We assume |S| > |Z|.



repeat for every pair z,Sz . Now SU is set to “true” if and only if sensor s is on unit U
which in turn sets all the Uz needed.

In the CLP framework offered by ECLiPSe we create for each sensor/zone a hash
containing all of its neighbours. Next we maintain throughout search for every unit two
lists of sensors and zones that have to be assigned to this unit or one of its neighbours.
We add elements to this list whenever we assign a sensor/zone and check that the lists
do not grow too long.

On instances that exhibit the MJVD both approaches pay. On the other instances the
overhead incurred doubles the runtimes in MINION but is negligible in ECLiPSe.

Lazy Clause Generation We know from our experiments with CDCL solvers that
clause learning and backjumping work well for the PUP if InterUnitCap > 2. Hence
we were curious to see what a LCG solver could achieve for a CP model. MINIZINC
translates the matrix-index in a constraint like

Zones[i] = u1 ∧ Sensors[j] = u2 → InterUnits[u1, u2] = 1

into a linear arithmetic expression on Zones[i], Sensors[j], u1 and u2 analogous to
one of our MINION models. We regard this handling of the inter-unit-connections as a
likely explanation for why FDX cannot keep up with MINION or ECLiPSe.

4.6 Cross-Evaluation

Let us briefly compare the different encoding frameworks. All experiments data were
done on the same 3 GHz dual core machine with 4 GB RAM running Fedora Linux used
in [1] using a ten minute time limit. For InterUnitCap = 2 CDCL-solvers don’t scale,
whereas CP solvers do: E.g. CLASP solves a double-80 in 50s and times out on double-
100, whereas MINION solves a double-3000 in 80s. For InterUnitCap = 2 the situation
is reversed: Most instances from “N4Triples” and “N4TriplesMJVD” are beyond the
reach of CP. In fact, we had to use much smaller instances from these families for the
above evaluation.

5 Conclusions

In this work we have contrasted classical constraint programming with CDCL-solvers
on the PUP. We have seen that native support for atmost constraints is hugely beneficial
for CDCL-solvers on the PUP. Likewise, in CP user-defined control over constraint
propagation proved to have a big impact on performance. Observe that unit propagation-
based CDCL-solvers don’t have this issue.

For the case of InterUnitCap = 2 we have seen that a good programmed search
strategy easily outperforms the search heuristics employed by CDCL-solvers. On the
other hand, for InterUnitCap > 2, we have not been able to find a CP search strategy
that matches CDCL-solvers. It would be interesting to see whether our best CP model
ported to a lazy clause generation solver (i.e. adding learning) closes this gap.

Thanks We wish to thank Chris Jefferson, João Marques-Silva and Andreas Schutt
for hints on MINION, the modified MINISAT and MINIZINC/FDX, respectively.
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