
Complexity in Constraint

Satisfaction and Automated

Configuration

Konstantinos Koiliaris

Oriel College

University of Oxford

A thesis submitted in partial fulfillment of the MSc in

Computer Science

September 2, 2011

This work is dedicated to my family

for all the sacrifices they made

for me to study at Oxford, the

city of Dreaming Spires.

Acknowledgements

I would like to thank Dr. Conrad Drescher for his excellent support and

encouraging co-supervision throughout this dissertation. I would also like

to thank Professor Georg Gottlob for giving me this wonderful subject

and for giving me inspiration and motivation in times of distress.

Abstract

The Partner Units Problem (Pup) is a new benchmark configuration prob-

lem. This problem involves the configuration of a network of sensors and

controllers, and has drawn significant attention due to the amount of in-

dustrial applications it finds. In this dissertation, we further explored pre-

vious work done on a tractable class of the problem, exploiting the notion

of a path decomposition, representing and re-evaluating the encodings for

the general version of the problem. During this endeavor, through con-

straint satisfaction methods, we presented new implied constraints and

search conditions, which resulted in a number of results that give us new

insight into the problem. Next, we extensively presented all the classes of

the problem and analyzed their complexity, a problem that had been left

open. Interestingly enough, the discrepancy between the classes of the

problem was significant in terms of their structural properties. The com-

plexity analysis showed that all the non trivial classes seem to belong in

NP-Complete (some were proven and others were conjectured), and even

the most trivial classes of the problem were proven to be solvable only in

PTime. Finally, we presented a logical approach to the Pup; we used two

algorithmic meta-theorems to approach and tackle the complexity of our

unsolved classes. In doing so we discovered a new configuration problem,

the Partner Units Embedding Problem, which we analyzed and proved to

be fixed-point linear in respect to the treewidth of the input graphs.

Contents

1 Introduction 1

1.1 Aim . 2

1.2 The Partner Units Problem . 2

1.3 Formal Definition of the Pup . 5

1.4 Thesis Structure . 5

2 Previous Results and Basic Facts 7

2.1 The General Case of the Pup . 7

2.1.1 The Pup is Hard . 7

2.1.2 K-regular Graphs . 7

2.1.3 Forbidden Subgraphs of the Pup 8

2.1.4 Bounds on the Number of Units Needed 9

2.2 The Case of InterUnitCap = 2 . 10

2.2.1 Path Decompositions . 11

2.2.2 Basic Properties of the SPup 11

2.2.3 An Algorithm for the SPup 12

2.2.4 SPup and Multiple Connected Components 15

2.2.5 Other SPup Approaches . 15

3 Towards an Efficient Pup Encoding 17

3.1 Results on the Pup . 17

3.1.1 Loose Connectedness Constraint 18

3.1.2 Forbidden Fan-Path . 18

3.2 Results on the SPup . 20

3.2.1 Connectedness Constraint . 20

3.2.2 Cycle Property . 21

4 Pup Versions & Complexity Analysis 23

4.1 Overview . 23

v

4.2 Case-by-case analysis . 25

4.2.1 InterUnitCap = 0 . 25

4.2.2 InterUnitCap = 1 . 26

4.2.3 InterUnitCap = 2 . 28

4.2.4 InterUnitCap ≥ 3 . 28

4.3 Pup Version Discrepancy . 28

5 A Logical Approach to the Pup 30

5.1 Introduction . 30

5.2 Treewidth . 32

5.3 Monadic Second Order Logic (MSOL) 34

5.4 Logic Meta-Theorems . 34

5.4.1 Courcelle’s Theorem . 34

5.4.2 Arnborg, Lagergren, and Seese’s Theorem 35

5.5 Pup and MSOL . 36

5.5.1 Approach . 36

5.5.1.1 Decision Problem . 38

5.5.1.2 Optimization Problem 40

5.5.2 An unsolved problem . 42

6 Conclusion 43

6.1 Impact of Work . 44

6.2 Open Problems . 44

References 46

vi

List of Figures

1.1 Solving a K6,6 Partner Units Instance — Partitioning Sensors and

Zones into Units on a Circular Unit Layout 4

1.2 A Grid-like Pup Instance . 4

2.1 An instance requiring more than max (|V1|, |V2|) units 9

2.2 The different types of solution building-blocks for UnitCap = 2 10

3.1 An example of a InterUnitCap = UnitCap = 2 ⇒ n = 6andm = 5

instance of a maximal solvable sequence of n(m− 1)n. 19

5.1 An example of an input bipartite graph G and a topological graph T . 37

5.2 An example of an input bipartite graph G and the maximal topological

graph T as described in Definition 5.5.2. 38

vii

List of Tables

4.1 Pup Instances and their Complexity 24

viii

Chapter 1

Introduction

Automated configuration can, informally, be defined as “special case of design ac-

tivity, where the artifact being configured is assembled from instances of a fixed

set of well-defined component types which can be composed conforming to a set of

constraints”[32]. In a more abstract way, we conceive it as the “problem of building

something from predefined parts with certain properties”. One of the most popular

approaches to tackling problems in automated configuration is through Constraint

Satisfaction Problems (Csp) modeling.

Constraint Satisfaction Problems are problems that involve a set of variables,

their domains and a set of constraints. We try to give our variables proper values

from their domain such that no constraint is being violated, this area is known as

constraint satisfaction. Typical example of CSP is the boolean satisfiability problem

(SAT), where the question is whether the variables of a given logical formula ϕ can

be assigned “true” or “false” values in such a way as to for the whole formula to

evaluate to true.

This work is dedicated to a new configuration problem that has vast applica-

tions in the aforementioned areas and it is a combination of theory and practice; the

Partner Units Problem (Pup). The Pup is not only an interesting theoretical

problem; it finds numerous applications in the areas of surveillance, monitoring and

security. Basically, any scenario that would involve communication between zones

and attached sensors can be efficiently encoded as a Pup instance.

In the coming chapters, we will, on the theory part, analyze the nature of the

problem by describing previous work done on it and giving new results to promote

intuition and understanding. We clearly define the frontier line of the research of

this problem and then go on to expand it. In this endeavor, we mainly go through

the fields of configuration, graph theory and finally logic. We analyze the structure

of the input graphs to see how they affect the tractability and computability of the

1

problem. Moreover, we classify the problem to all of its subproblems based on one

of the parameters it has. Next, we try to tackle the complexity of the problem in all

of its versions — a challenging task indeed. It appears that the most of the versions

of the problem are hard with only its most trivial cases being polynomial. Finally,

we present a logical approach to the problem. We show that the problem cannot be

encoded in Monadic Second Order Logic (MSOL). But, we prove that a very close

variation of the problem can be expressed in MSOL and hence is a fixed-parameter

tractable.

On the more practical side of the project, we attempt to improve the runtime

of the existing encodings and algorithm. We try to achieve that by looking at the

algorithm / encodings themselves, trying to add or modify the constraints they use.

The main idea here is to have the algorithm tap as many constraints as possible early

on, in order to reduce the choices it will have to make afterwards. So, we added more

constraints, to try and prune the search space of the encodings. We believe that those

new conditions and constraints if applied to the encodings at hand will improve their

efficieency.

1.1 Aim

The aim of this dissertation is to further advance the state-of-the-art of the newly

introduced Partner Units Problem. We aim at presenting previous work done

and then expanding it, both in an applied scope, by adding new constraints for the

encodings of the problem, and in a theoretical perspective where we will be proving

the complexity of several classes of this configuration problem. Finally, the work from

this dissertation will look at proving a logical approach to the Pup and by exploiting

two major algorithmic meta-theorems will aspire to classify the remaining versions.

1.2 The Partner Units Problem

We will at this point quote the introduction from [3]:

“The Partner Units Problem has recently been proposed as a new benchmark

configuration problem [20]. It captures the essence of a specific type of configuration

problem that frequently occurs in industry.

Informally the Pup can be described as follows: consider a set of sensors that

are grouped into zones. A zone may contain many sensors, and a sensor may be

attached to more than one zone. The Pup then consists of connecting the sensors

and zones to control units, where each control unit can be connected to the same fixed

2

maximum number UnitCap of zones and sensors.1 Moreover, if a sensor is attached

to a zone, but the sensor and the zone are assigned to different control units, then

the two control units in question have to be (directly) connected. However, a control

unit cannot be connected to more than InterUnitCap other control units (the partner

units).

For an application scenario consider e.g. a museum where we want to keep track

of the number of visitors that populate certain parts (zones) of the building. To this

end, the doors leading from one zone to another are equipped with sensors. To keep

track of the visitors, the zones and sensors are attached to control units; the adjacency

constraints on the control units ensure that communication between control units can

be kept simple.

It is worth emphasizing that the Pup is not limited to this application domain: It

occurs whenever sensors that are grouped into zones have to be attached to control

units, and communication between units should be kept simple - e.g. in intelligent

traffic management, or surveillance and security applications. The Pup is used as a

novel benchmark instance at the 2011 answer set programming competition [5].

Figure 1.1 shows aPup instance and a solution for the special case whereUnitCap =

InterUnitCap = 2 — six sensors (left) and six zones (right) which are completely

inter-connected are partitioned into units (shown as squares) respecting the adja-

cency constraints. Note that for the given parameters this is a maximal solvable

instance; it is not possible to connect a new zone or sensor to any of the existing

ones.

In this dissertation we will show that the case where InterUnitCap = 2 and

UnitCap = k for some fixed k is tractable by giving a specialized NLogSpace algo-

rithm that is based on the notion of a path decomposition. While already this case is

of great importance for our partners in industry, the general case is quite interesting

in its own right: Consider, for instance, a grid of rooms, where every room is accessi-

ble from each neighboring room, and all the doors are fitted with a sensor. Moreover,

there are doors to the outside on two sides of the building; the respective instance is

shown in figure 1.2 with rooms as black squares, and doors as cyan circles. It is not

hard to see that this instance is unsolvable for InterUnitCap = 2 and UnitCap = 2,

whereas it is easily solved for InterUnitCap = 4 and UnitCap = 2: Every room goes

on a distinct unit, together with the sensors to the west and to the north; the con-

nections between units correspond to those between rooms. Clearly this solution is

optimal in the sense of using the least possible number of units.

1For ease of presentation and without loss of generality we assume that UnitCap is the same for

zones and sensors.

3

Figure 1.1: Solving a K6,6 Partner Units Instance — Partitioning Sensors and Zones into

Units on a Circular Unit Layout

Hence, in this work, we will also present encodings in the optimization frame-

works of constraint satisfaction programming that can be used to solve the general

version of the Pup. We also show how to adapt these encodings to the special case

InterUnitCap = 2. For both cases we evaluate the performance.

Figure 1.2: A Grid-like Pup Instance

4

1.3 Formal Definition of the Pup

In this section we present the basic formal definitions of the Pup, some basic proper-

ties of Pup instances that affect the existence, shape, or size of solutions, as well as

basic complexity results.

Formally, the Pup consists of partitioning the vertices of a bipartite graph G =

(V1,V2, E) into a set U of bags such that each bag

• contains at most UnitCap vertices from V1 and at most UnitCap vertices from

V2; and

• has at most InterUnitCap adjacent bags, where the bags U1 and U2 are adjacent

whenever Vi ∈ U1 and Vj ∈ U2 and (Vi, Vj) ∈ E .

To every solution of the Pup we can associate a solution graph. For this we

associate to every bag Ui ∈ U a vertex VUi
. Then the solution graph G∗ has the

vertex set V1 ∪ V2 ∪ {VUi
| Ui ∈ U} and the set of edges {(V, VUi

) | V ∈ Ui ∧ Ui ∈

U} ∪ {(VUi
, VUj

) | Ui and Uj are adjacent.}. In the following we will refer to the

subgraph of the solution graph induced by the vUi
as the unit graph.

The following are the two most important reasoning tasks for the Pup: decide

whether there is a solution, and find an optimal solution, that is, one that uses the

minimal number of control units. We are especially interested in the latter problem.

For this we consider the corresponding decision problem: Is there a solution with a

specified number of units? The rationale behind the optimization criterion is that (a)

units are expensive, and (b) connections are cheap.”

1.4 Thesis Structure

The remainder of this dissertation is organized as follows:

• In Chapter 2 we present the research frontier on the Pup underlining all the

crucial previous results, based on the work done in [3].

• In Chapter 3 we introduce the results that aim at improving previous algorithms

and encodings.

• In Chapter 4 we classify the different versions of the Pup and analyze their

complexity, proving it for some of the cases.

• In Chapter 5 we give a logic approach to the Pup and present results around

Courcelle’s and Arnborg et al.’s Meta Theorems.

5

• In Chapter 6 we conclude this work by underlining the impact of the work

presented, noting the future work and pinpointing the open problems.

6

Chapter 2

Previous Results and Basic Facts

2.1 The General Case of the Pup

2.1.1 The Pup is Hard

In this section we will provide basic facts and previous results on the general version

of the Pup. Let us start by saying that the Partner Units Problem is in fact

hard. After having worked on the problem for several months, the author would like

to state the following conjecture on the problem’s tractability,

Conjecture 2.1.1. The Pup in its general cases is NP-Complete.

Next, let us look into the solutions of the Pup. What do they look like, what can

we get out of them, what relevance can we perceive amongst them?

2.1.2 K-regular Graphs

Firstly, let us recall a definition; we assume that the reader is familiar with the basic

notions of graph theory, such as bipartite graphs, connected components, reachability,

etc..

Definition 2.1.2 (k-regular). A graph G is called k-regular just when every vertex

u ∈ G has exactly k neighbours.

There is a connection between the most general solutions to the Pup and k-regular

unit graphs. Having k-regular unit graphs in solutions means that we are exploiting

the InterUnitCap capacity for connections between units to the fullest. In a sense,

k-regular unit graphs are thus the most general solutions.

In the case where k = 2, there is exactly one k-regular graph; the cycle. In the case

where k is odd, k-regular unit graphs only exist if there is an even number of units

7

(“hand-shaking lemma”). Moreover, for k > 2 the number of distinct most general

unit graphs grows rapidly: for instance, for k = 4 there are six distinct graphs on

eight vertices, and 8037418 on sixteen vertices; for twenty vertices not all distinct

graphs have been constructed [30].

It can be shown, though, that all these solution topologies can be enforced. We

include here another observation from [3].

Observation 2.1.3 (Pup Instances and k-regular Graphs [3]). For every k-regular

graph Gk there exists a Pup instance G = (S, Z,E) with InterUnitCap = k such that

in every solution of G the unit graph is Gk.

Which also leads to the following corollary.

Corollary 2.1.4. If there exists a solution to a Pup instance G = (S, Z,E) then

there exists a solution to the Pup instance of every subgraph H of G.

What is also clear from the above Observation 2.1.3 is that as the InterUnitCap

values increase, if there are no special restrictions on the solution topology of the

application domain, then it is practically not feasible to iteratively try all most general

solution topologies, so a brute force algorithm would “blow-up” exponentially. Hence,

the solution topology will have to be inferred instead.

2.1.3 Forbidden Subgraphs of the Pup

Another known result from [3] regarding the Pup instances is the following.

Lemma 2.1.5 (Forbidden Subgraphs of the Pup [3]). A Pup instance has no solution

if it contains K1,n or Kn,1 as a subgraph, where n = ((InterUnitCap+1)∗UnitCap)+1.

The intuition behind this lemma is the following. Every sensor (or zone) in the

input graph has a maximum degree because there are so many zones (or sensors)

that can be placed in partner units around the unit that holds the initial sensor, in

order to maintain the minimum distance of 1 that they had in the input graph. The

threshold of the lemma is explained as follows. Each unit can be connected with, up

to, InterUnitCap other partner units and each of all these connected units (IUC+1)

can hold up to UnitCap sensors and zones. So, (InterUnitCap + 1) ∗ UnitCap) is

the maximum degree of any vertex of the input graph in order for the instance to be

solvable.

8

2.1.4 Bounds on the Number of Units Needed

In previous work [3], it has been shown that the number of units in a solution is

bounded from below by lb = ⌈max (|V1|,|V2|)
UnitCap

⌉, since then at least every unit but one will

be have reached their full capacity and also that the the amount of units needed is

bounded from above by, the obvious, ub = |V1|+ |V2|, otherwise there would be empty

units in the solution. Lastly, they noted that if we have more than one connected

components each with an upper bound of ubi, then we can safely state ub =
∑

ubi.

Next, we are going to present yet another result from [3]; the stronger upper

bound ub = max (|V1|, |V2|) holds if UnitCap > 1 and InterUnitCap = 2. The

instance depicted in figure 2.1 shows that this ub does not hold for UnitCap = 1 and

InterUnitCap = 2.

Figure 2.1: An instance requiring more than max (|V1|, |V2|) units

It is constructed starting from the solution shown; intuitively, it enforces a “hole”

in the units on the left-hand side that can not be closed without violating one of the

partner unit constraints.

We now state the above result more formally.

9

Proposition 2.1.6 (Upper Bound for UnitCap > 1 and InterUnitCap = 2 [3]). For

a Pup-instance G = (V1,V2, E) with UnitCap > 1 and InterUnitCap = 2 there exists

a solution if and only if there exists a solution that uses at most ub = max (|V1|, |V2|)

units.

Figure 2.2: The different types of solution building-blocks for UnitCap = 2

Note that this upper bound is not tight - by doing a proper case analysis it is

certainly possible to obtain an upper bound that depends on the value of UnitCap,

and takes into account the possibility of merging more than two units at a time.

Finally, we would like to notice that for the above mentioned case a tighter bound

for the general Pup remains to be computed.

The importance of knowing a better upper bound on the number of units needed

for a solution is outlined later in the chapter.

2.2 The Case of InterUnitCap = 2

We will introduce the Special Partner Units Problem (SPup); i.e., the specific version

of the Pup where InterUnitCap is equal to exactly 2. This version of the Pup is of

10

high industrial importance as it has many applications in many of the areas presented

in the introduction. We will see that the SPup is tractable, and after going through

its properties we will state the NLogSpace search algorithm presented in [3].

For ease of presentation in the sequel we make the same simplifying assumption

used in [3]; that the underlying bipartite graph is connected. This does not affect

solutions of the decision and the search versions of the Pup, where the connected

components can be tackled independently. Though, for optimal solutions the con-

nected components of an underlying graph will have to be considered simultaneously;

cf. the discussion in section 2.2.4.

2.2.1 Path Decompositions

The algorithm in [3] decides the SPup by exploiting the notion of path decomposition

of a certain width, of a given graph. We next recall the respective definitions.

Definition 2.2.1 (Path Decomposition [3]). A path decomposition of a graph G =

(V , E) is a pair (P, χ) such that P is a simple path; i.e., P does not contain cycles.

The function χ associates to every vertex W of the path P a subset B ⊆ V such that

(i). for every vertex V in V there is a vertex W on P with V ∈ χ(W);

(ii). for every edge (V1, V2) in E there is a vertex W with {V1, V2} ⊆ χ(w); and

(iii). for every vertex V in V the set {W | V ∈ χ(W)} induces a subpath of P .

Condition (iii) is called the connectedness condition. The subsets B associated with the

path vertices are called bags. The width of a path decomposition is maxW (|χ(W)−1|).

The pathwidth pw(G) of a graph is the minimum width over all its path decomposi-

tions.

2.2.2 Basic Properties of the SPup

We proceed by identifying the basic properties of the SPup. The key observation

here is that the units and their interconnections form a special kind of unit graph in

any solution; either a simple path, or a simple cycle. This holds because each unit is

connected to at most two partner units.

Moreover, cycles are more general unit graphs than paths; every solution can be

extended to a cyclic solution and hence in the sequel we only consider cyclic solutions.

Exploiting this observation, we can transform the SPup into the problem of find-

ing a suitable path decomposition of the input graph G:

11

Theorem 2.2.2 (SPup is Path-Decomposable [3]). Assume a SPup instance given

by a graph G = (V1,V2, E) is solvable with a solution graph G∗ with |U| = n. Let

f be the unit function that associates vertices from G to U . Then there is a path

decomposition (P, χ) of G of pathwidth ≤ (3 ∗ 2 ∗ UnitCap) − 1, with the following

special properties:

(i) The length of P is n− 1; P = W1, . . .Wn−1.

(ii) There are sets S1 ⊆ V1, S2 ⊆ V2 with |Si| ≤ UnitCap such that S1 ∪ S2 are in

every bag of the path decomposition.

(iii) Apart from S1∪S2 each bag contains at most 2 ∗UnitCap elements from V1 (or

V2, respectively).

(iv) For any vertex V ∈ V1 ∪V2 all neighbours of V appear in three consecutive bags

of the path decomposition (assuming the first and last bag to be connected).

(v) For each bag χ(Wi) of it holds χ(Wi) = f−1(U1) ∪ f−1(Ui) ∪ f−1(Ui+1) for

1 ≤ i ≤ n− 1.

(vi) S1 = f−1(U1) ∩ V1 and S2 = f−1(U1) ∩ V2.

Intuitively, the vertices in the sets S1 and S2 from condition (ii) above are those

that close the cycle; i.e., that are connected to unit U1. These have to be in every bag

as some of their neighbours might only appear on the last unit Un. If all neighbours

of S1 and S2 already appear in U1 ∪ U2 then we need consider only paths as unit

graphs instead of cycles, and the pathwidth is hence decreased by 2 ∗ UnitCap.

2.2.3 An Algorithm for the SPup

By Theorem 2.2.2 we know that if an SPup instance is solvable then there is a

path decomposition, but we still need an algorithm for finding such suitable path

decompositions; path decompositions with specific properties:

• The paths should be short (the number of bags reflects the number of units);

and hence,

• The bags should be rather full (in ”good” solutions the units will be filled up).

• The construction of the bags must be interleaved with checking the additional

constraints.

12

In what follows we give the description of this non-deterministic algorithm as

presented by [3] and inspired by [23]. The bags on the path decomposition are guessed.

The initial bag partitions the graph into a set of remaining components that are

recursively processed simultaneously. A single bag suffices to remember which part

of the graph has already been processed; the bag separates the processed part of

the graph from the remaining components. Consequently, all we have to store is

the current bag and the remaining components. It turns out that for this we only

need logarithmic space, and thus the algorithm runs in NLogSpace, and hence in

polynomial time [13].

In addition to the bags the unit function is guessed, too. According to condition

(iv) from above all neighbours of any vertex in G occur in three consecutive bags in

the path decomposition. Hence, for checking locally that the unit function is correct

it suffices to remember three bags at each step. Finally, we note that the algorithm

operates at the level of units rather than bags.

DecideSPup(G) [3]

1 Guess disjoint non-empty U1, U2 ⊆ V(G)

with |Ui ∩ V1| ≤ UnitCap ≥ |Ui ∩ V2|

2 CR ← G \ (U1 ∪ U2)

3 if DecideSPup (CR, 〈U1, U2〉, 〈U1, U2〉)

4 then ACCEPT

5 else REJECT

DecideSPup(CR, 〈U1, U2〉, 〈Ui−1, Ui〉) [3]

1 if CR = ∅

2 then

3 if ∀V ∈ U1 nb(V) ⊆ U1 ∪ U2 ∪ Ui and

∀V ∈ Ui nb(V) ⊆ Ui−1 ∪ Ui ∪ U1

4 then ACCEPT

5 else REJECT

6 else

7 Guess non-empty Ui+1 ⊆ V(
⋃

CR)

with |Ui+1 ∩ V1| ≤ UnitCap ≥ |Ui+1 ∩ V2|

8 For V ∈ Ui check nb(V) ⊆ (Ui−1 ∪ Ui ∪ Ui+1)

9 C ′
R ← (CR \ Ui+1)

10 DecideSPup (C ′
R, 〈U1, U2〉, 〈Ui, Ui+1〉)

We next make a number of observations that were exploited to turn DecideSPup

into a practically efficient algorithm.

13

Observation 2.2.3 (Guiding the Guessing [3]). Not all zones and sensors assigned

to units have to be chosen randomly. At most UnitCap neighbours of sensors and

zones on the first unit can be assigned to the last unit. Hence the following holds:1

|nbs(U1) \ (U1 ∪ U2)| ≤ UnitCap ≥ |nbz(U1) \ (U1 ∪ U2)|.

Moreover, the neighbours of U1 not assigned to U1 or U2 may only be guessed in the

last step, where the number of unprocessed sensors (or zones) is at most UnitCap.

Starting from i ≥ 2 we have the stronger:

(nbs(Ui) \ (Ui ∪ Ui−1)) ⊆ Ui+1 ⊇ (nbz(Ui) \ (Ui ∪ Ui−1)).

Observation 2.2.4 (Finding Optimal Solutions First [3]). Next recall that “good”

solutions correspond to short path decompositions with filled-up bags, and the number

of units used in the solution of a SPup instance G = (V1,V2, E) is bounded by lb =

⌈max (|V1|,|V2|)
UnitCap

⌉ from below and by ub = max (|V1|, |V2|) from above. Hence we can

apply iterative deepening search: First, try to find a solution with lb units; if that fails

increase lb by one; hence the first solution found will be optimal.

This yields the following corollary.

Corollary 2.2.5 (Tractability of SPuOp [3] [3]). On connected input graphs the

SPuOp is solvable in NLogSpace.

Note that branch-and-bound-search (on the number of units used) can not be

used: E.g. a K6,6 graph does not admit solutions with more than three units.

Observation 2.2.6 (Symmetry Breaking). We already observed that cycles are more

general unit graphs than paths. But with cycles for unit graphs there are two types

of rotational symmetry: For a solution with unit graph VU1
, . . . , VUn

, VU1
there is

(1) a solution VU2
, . . . , VUn

, VU1
, VU2

, etc.; in addition there also is (2) the solution

VU1
, VUn

, VUn−1
, . . . , VU2

, VU1
. We can break these symmetries by stipulating that

• the first sensor is assigned to unit U1; and

• the second sensor appears somewhere on the first half of the cycle.

1We denote by nbs(U) (nbz(U)) the set of sensors (zones) that are adjacent in the input graph

to zones (sensors) assigned to U .

14

2.2.4 SPup and Multiple Connected Components

As we have said, the above algorithm works only for input graphs of one connected

component. The problem becomes more complex for instances of multiple connected

components. Part of the problem is that any two connected components may either

have to be assigned to the same, or to two distinct unit graph(s). Accordingly, we are

a priori not sure which of the two choices leads to optimal results - for instance, if we

assume that UnitCap = 2 then two K3,3 should be placed on one cyclic unit graph,

while a K6,6 must stand alone.

2.2.5 Other SPup Approaches

We have shown the PTime algorithm introduced in [3] for solving the SPup for up

to logarithmically many connected components. Alternatively, in the same paper by

Gottlob et al. [3], quite a few more encodings were introduced for the SPup and the

Pup. From these encodings we will focus on the two with the better results2.

These two are the encodings in the frameworks of propositional satisfiability test-

ing (Sat) and constraint solving (Csp). We will see in the following Chapter how we

can try to improve those encodings by stating new results.

Closely related to the performance of the above is the discovery of a tighter upper

bound of units needed to compute a solution. As we have seen in Observation 2.2.4,

the process used in the DecideSPup algorithm as well as in the encodings just

mentioned, is iterative deepening search. That is, to initially check if an optimal

solution exists; i.e. a solution using the minimum number of units. And then, if

that fails try with the minimum number +1, then +2 etc. up to the upper bound of

number of units a solution can have. It is clear that finding a tighter upper bound

on this maximum number, will greatly improve the runtime for unsolvable instances

— as for them the iteration will have to iterate from the lower bound all the way to

the upper bound of the number of units.

Finally, it is our strong belief that the runtime of the above could be greatly

decreased by changing this approach to a slightly different one. By analyzing experi-

mental results, we have found out that there is a high probability that the following

event occurs. If the instance is solvable, it has an optimal solution or it has a solution

using the maximum number of units. The case of an instance not having an optimal or

worst solution and yet be solvable, appeared less often. So, in the end, we concluded

that an instance that is solvable uses either the minimum or the maximum number

2Better in terms of the problem models that were selected by [3]; there is no guarantee that those

problem models are the best ones possible though.

15

of units with higher probability. As a result of that we wish to propose an alternative

approach to the current one. This lemma, presents a modified version of the iterative

deepening search used in the DecideSPup algorithm and in the encodings in [3].

Lemma 2.2.7 (Modified Iterative Deepening Search). First, try to find a solution

with lower bound units; if that fails try to find a solution with upper bound units; if

that fails as well we try to find a solution with lower bound +1 units; if that fails as

well we try to find a solution with lower bound +2 units, etc..

Experimental results have not been made to test the efficiency of this; the work

on the Pup is ongoing.

16

Chapter 3

Towards an Efficient Pup Encoding

In this part we present results on both the special and the general version of the

Partner Units Problem. Our results on the special version (SPup) aim at improving

the effectiveness of the search algorithm and the encodings presented in [3] and also

at giving a deeper understanding on the problem itself. We must also note here, as

we said before, that the algorithm presented in section 2.2.3 is more a theoretical

result aiming at setting the bound of the complexity of the problem, than a result

to be used as an actual practical tool. As we discussed, there are other encodings

of the SPup and of the Pup that are practically more efficient. In particular, we

have said that the problem can be more efficiently solved if encoded in Sat and in

Csp all of which can be considered as state-of-the-art for optimization problems [27].

The results presented on the SPup try to improve the runtime of these encodings by

imposing new implied constraints or search conditions while others revolve around

the theoretical aspect of the problem and the algorithm.

The results that refer to the general case of the Pup are presented as part of the

general intuition of the problem as well as for laying the foundations for a possible

algorithm to solve this general version. It is intriguing how many different versions

the problem has and how complicated its understanding really is. In what follows, we

try to offer the reader enough notes on the properties of the problem to help provide

a solid understanding and promote future research on it.

3.1 Results on the Pup

We begin by introducing two results on the Pup.

17

3.1.1 Loose Connectedness Constraint

The first result we are presenting in this section is a constraint that enforces connec-

tion relations from the input graph to be maintained in the unit graph as well. In

particular, we show that there exists a threshold of common neighbours between any

two sensors (zones) that, if surpassed, enforces that the two sensors (units) will have

to be “close” in the unit graph.

Proposition 3.1.1 (Loose Connectedness Constraint). If two sensors (or zones)

of the input graph G = (S, Z,E) have a number of common neighbours equal to

(InterUnitCap ∗UnitCap)+ 1 then in the solution graph they will be in the same unit

or in directly connected units.

Proof. Towards contradiction we have the following. Suppose that the two sensor

vertices will not be in the same or directly connected units. That implies that the

minimum distance of s1 ∈ U1 and s2 ∈ U2 in the solution graph will be greater than

or qual to 2.

Now, because s1 and s2 share (InterUnitCap ∗ UnitCap) + 1 common neighbours

that means that the ((InterUnitCap ∗ UnitCap) + 1)−zones will have to be spread in

(at least) two units. Since s1 and s2 where directly connected to them in the input

graph, they have to be connected (distance 1) in the solution graph. Now, because

U1 and U2 have distance 2 it means that the only place these zones can go is in the at

most InterUnitCap−many units between U1 and U2. Contradiction! As we said that

we have ((InterUnitCap ∗ UnitCap) + 1)−zones and all have to go into those units.

�

The importance of this constraint is that it provides a way to structure the unit

graph. If this was to be included in an encoding the solver could check these kind

of constraints and check for violations of the UnitCap and / or the InterUnitCap. If

that happens, then the instance can be instantly rejected as unsolvable.

3.1.2 Forbidden Fan-Path

The following proposition presents another case of forbidden subgraphs for the Pup.

In particular we are interested in the degree sequence of sensors (zones) in acyclic

connected subgraphs of the input graph. We show that there is a specific sequence

threshold that, if exceeded, guarantees that the instance is unsolvable.

Before going on to the proposition we give the following definition.

Definition 3.1.2 (Fan-path). Given a Pup instance G = (S, Z,E), we call Fan-path

an acyclic connected subgraph of G.

18

Figure 3.1: An example of a InterUnitCap = UnitCap = 2 ⇒ n = 6andm = 5 instance

of a maximal solvable sequence of n(m− 1)n.

Proposition 3.1.3 (Forbidden Fan-path). A Pup instance G = (S, Z,E) is unsolv-

able if there exists a path p of the form:

s1, z1, ..., zk, s2, zk+1, ..., zg, sf with si ∈ S ∀ 1 ≤ i ≤ f and zj ∈ Z ∀ 1 ≤ j ≤ g

in the Fan-path such that:

• d(s1) = n = d(sf); and

• d(si) ≥ m ∀ 1 < i < n.

and

• n = (InterUnitCap+ 1) ∗ UnitCap; and

• m = (InterUnitCap ∗ UnitCap) + 1.

19

Proof. Let us assume, without loss of generality, that initially we have a sensor s1

with degree n. This number, n, is the maximum number of neighbours a sensor (zone)

can have. The next sensor s2 will have exactly one common neighbor with s1, since

we defined them as neighboring and also since the subgraph they are in is acyclic,

and let z1 be their connecting zone. The neighbours (degree) of s2 can be:

• m < neighbours ≤ n: The instance is unsolvable. It is easy to see that in

this case we cannot preserve the distances between the sensors and zones of the

input graph to the solution graph.

• m = neighbours: In this case, s1 and s2 will have filled up the capacity in all

their connected units. Then, if the next sensor s3 without loss of generality has

z3 in common with s2, then it cannot have more than m neighbours, nor any

other subsequent sensor s4, s5, etc., since the connected units will all be full.

�

We now give an example to offer better understanding of this result. Given a Pup

instance of InterUnitCap = UnitCap = 2⇒ n = 6 and m = 5 where we have s1 = 6

and sf = 6, any other sensor si where 1 < i < f in the path can have a degree of

up to 4 = m − 1 for the instance to be solvable. In our example, as shown in figure

3.1, the vertices s1 and sf=3 have the maximum number of neighbours and because

of that both of them have filled all the InterUnitCap+1 = 3 units that can host their

neighbours. This way, the 2 out of 3 units that could host sensor s2’s neighbours,

namely the top and the bottom ones, are full — both include one zone from the

neighbors of s1 and s3 respectively, and each has the zone that they have in common

with s2; in our image z6 and z9 — and so s2 has only one unit to fill with zones that

are exclusively his own. So, UnitCap = 2 zones of his own and another 2 zones in

common with s1 and s3 form the maximum degree of s2, m− 1 = 4.

3.2 Results on the SPup

Two more results on the SPup are shown below.

3.2.1 Connectedness Constraint

We will start our approach to the SPup by stating the following proposition - a new

constraint on the connectedness of the graph. Much like Proposition 3.1.1, this is a

proposition that has to do with maintaining structural properties of the input graph

to the final unit graph.

20

Proposition 3.2.1 (Connectedness Constraint). If two sensors (or zones) of the

input graph G = (S, Z,E) have a number of common neighbours equal to UnitCap+1

in a single connected component with more sensors or zones than 4∗UnitCap then in

the solution graph they will either be in the same unit or in directly connected units.

Proof. Towards contradiction we have the following. Suppose that the two sensor

vertices will not be in the same or directly connected units. That implies that the

minimum distance of s1 ∈ U1 and s2 ∈ U2 in the solution graph will be greater than

or qual to 2.

Now, because s1 and s2 share UC + 1 common neighbours that means that the

(UC +1)−zones will have to be spread in (at least) two units. Since s1 and s2 where

directly connected to them in the input graph, they have to be connected (distance

1) in the solution graph. Now, because U1 and U2 have distance 2 it means that the

only place these zones can go is in the unit between U1 and U2. Contradiction! As

we said that we have (UC + 1)−zones and all have to go to one unit. �

This constraint is much similar to Proposition 3.1.1 and the importance of it is

mostly explained there. The main difference is that this constraint is believed to have

a bigger impact on the runtime of the solvers. The reason is that its condition is

not as rare as the one for the equivalent proposition for the general case. We firmly

believe that this one can be met, with a high probability, in many instances and hence

could greatly improve the efficiency of an SPup encoding.

3.2.2 Cycle Property

The next proposition again imposes a structural property to the unit graph but in a

much more abstract way. We analyze input instances that have cycles and understand

what that forces onto our unit graph. What we prove is that if the cycle on the input

graph is beyond a set threshold then it also enforces a cyclic topology on the unit

graph.

Proposition 3.2.2 (Cycle Property). If the input graph G = (S, Z,E) has a cycle

of length n ≥ (4 ∗ UnitCap) + 2 then the unit graph will have a cycle of length

⌈ n
2∗UnitCap

⌉ ≤ m ≤ n.

Proof. Let us start this proof by giving some intuition on the number n and the

reason it has to be greater than or equal to (4 ∗ UnitCap) + 2. Notice that a cycle

of length (4 ∗UnitCap) in the input graph G would, by definition, fill up exactly two

units in the unit graph - that happens because any cycle of length k in G contains k
2

sensors and k
2
zones. So, a cycle of length (4∗UnitCap)+ε would impose a minimum

21

cycle of three units on the unit graph. The ε is used here after the pure mathematical

notation; the next bigger value of (4 ∗ UnitCap). Notice that ε cannot be 1 since

our input graph is bipartite and so every cycle has to have even length. As such, the

smallest value for ε is 2, hence the (4 ∗ UnitCap) + 2.

Now let us go through the bounds of m:

• m ≤ n: This is trivial, each unit, in the minimal case, can have only 1 sensor

or zone and it does not make any sense to have any empty units.

• ⌈ n
2∗UnitCap

⌉ ≤ m: The lower bound presented is constructed as follows. We start

by diving n by two. This holds because, as explained above, n consists of both

sensors and zones. We further divide n into distinct units by dividing with

UnitCap. Finally, we take the smallest integer not less than this n
2∗UnitCap

.

�

Results 3.2.2, 3.2.1, and 3.1.1 are very interesting because they are some of the few

rare constraints that actually impose a specific topology on the unit graphs, an area

that we had not managed to cover with other propositions up to now. In general,

because most of our constraints are for unsolvability and forbidden instances, it is

rather hard to say something about their corresponding unit graphs, due to the nature

of the problem. Moreover, it is one more constraint to be taken into consideration

when searching if a graph instance is solvable.

Finally, we want to note that we have not tested our results yet and that these

are still theoretical speculations. It remains to be seen whether and how much these

new constraints can improve the runtimes of the current encodings.

22

Chapter 4

Pup Versions & Complexity

Analysis

4.1 Overview

At this point two things should be clear. The first is that the Pup is in NP. E.g.,

we have shown that the Pup can be encoded in frameworks of (Sat) and (Csp). In

addition, it is rather straightforward that, given a candidate solution for the Pup we

can verify it in PTime. The second is that the Pup has many of different instances

depending on the values of the UnitCap and the InterUnitCap. As we have seen

throughout this dissertation, each of the different instances that occur for different

values on these two parameters produce quite different sub-problems. It is this na-

ture of the Pup that makes it interesting to approach and yet at the same time,

complicated to fully understand.

What we can say after working on the problem for this long is that the main deci-

sive factor for the form of the problem is indeed the InterUnitCap with the UnitCap

following up as well. We can observe that the UnitCap does change the problem as

well, but in general the approach and the rules hold unchanged for its different non-

trivial values. For that reason, we have separated the problem into different versions

based on the InterUnitCap values and not on the values for the UnitCap1.

It is not hard to see that this focus on the InterUnitCap produces an intuitive

division for the problem; one can easily see that the problem has a totally different

structure for

• InterUnitCap values of 0 and 1

1We will later on in the chapter that there is another distinction that could be made based on

the value of the UnitCap, but we will not go into detail on it.

23

• InterUnitCap value of 2

• InterUnitCap values of 3 or more

Indeed we observe that for the different values of IUC we have the following break-

down into distinct cases:

• IUC ≤ 1: The solution graph will have only isolated units; for the case of 0 it

will have single units totally isolated from the rest and for the case of 1 it will

only have pairs of units but once again isolated.

• IUC = 2: The solution graph can have isolated units or, in the most dense

case, have units connected in a line or a circle.

• IUC ≥ 3: The solution graph can have any of the previous topologies but can

also be interconnected more, forming a complex unit graph. As the value of

IUC increases the more complex the unit graph gets.

Based on that, the main cases are described on the table 4.1. We further divide

the problem, based on whether the UnitCap will have a fixed value k or if it will be

a free variable given as part of the input. 1⋆11 †1‡

InterUnitCap UnitCap Complexity

0 ⋆ 1 NP-complete

0 k † PTime ‡

1 ⋆ 1 NP-complete ‡

1 k † PTime ‡

2 ⋆ 1 ?

2 k † O(nf(UC))

3+ ⋆ 1 ?

3+ k † ?

Table 4.1: Pup Instances and their Complexity

This is an analytical case distinction of the Pup with respect to the values of

InterUnitCap. More versions of the problem could be explored for the different values

1Arbitrary UnitCap size given as part of the input.
†Fixed number for UnitCap.
‡Results presented in this paper.

24

of UnitCap, for example, UnitCap = 1. But we will not be concerned with them in

this dissertation. Let us now go through each of these cases separately. Note that

unless stated otherwise, the following results hold for input graphs of arbitrary graph

families.

4.2 Case-by-case analysis

4.2.1 InterUnitCap = 0

The version of the Pup that restricts the value of the InterUnitCap to 0 is the simplest

version that we can get. The problem then is transformed to a problem quite similar

to fixed-parameter BinPacking, the only difference being that in Pup the equivalent

of the items of BinPacking are connected components.

The complexity for the two cases of IUC = 0 is tackled. The idea behind the

solutions here is based on the trivial structure of the unit graph that is produced.

As we described earlier, because of the nature of the restriction the InterUnitCap

enforces on the unit graph, we will get a result of isolated single units.

We start with the result from [3] where by reduction from BinPacking it can be

shown that the optimization version of the Pup is intractable when InterUnitCap = 0,

and UnitCap is part of the input.

Theorem 4.2.1 (Intractability of the PuOp IUC=0 [3]). The PuOp is NP-complete

when InterUnitCap = 0, and UnitCap is part of the input.

The next result is again on the case of InterUnitCap = 0, but this time the UnitCap

is a fixed constant number k. We show that this problem is tractable and that it

belongs in PTime by exhaustive search.

Theorem 4.2.2 (Tractability of the PuOp IUC = 0 & UC = k). The PuOp is

PTime when InterUnitCap = 0, and UnitCap is a fixed constant number k.

Proof. For this proof, we will be calling two solutions equivalent if they are the same

up to the ordering of the units, the ordering of the connected components within each

bin and the distinguishing of connected components of the same size. We will show

that there are polynomially many nonequivalent solutions - we can find the optimal

solution by exhaustive search.

The number of configurations for a single unit is at most UC 2·UC , even if we

distinguished between different orderings of the connected components, therefore a

25

configuration can be specified by the size of each of the at most UC connected com-

ponents in the unit. The value UC 2·UC might seem rather large, but for our problem

it is just a constant.

If we are not attentive enough about only counting nonequivalent solutions, we

might come to the conclusion that since a solution uses at most n units, each of which

can be in one of at most UC 2·UC configurations, there are at most UC 2·UC n

solutions.

This bound is not polynomial and hence not good enough, but we can improve it by

recalling that it only matters how many units of each configuration we have, and not

in what order they are in.

As such, if xi are the numbers of units with configuration i, then the nonequivalent

solutions correspond to nonnegative integral solutions to the equation

x1 + x2 + ...+ xUC 2·UC ≤ n

of which there are at most

(

n+ UC 2·UC

UC 2·UC

)

as we know from combinatorics. Now, the above bound is at most a polynomial

bound of degree UC 2·UC ; i.e., O(nUC 2·UC

)

�

4.2.2 InterUnitCap = 1

When we restrict the Pup to InterUnitCap = 1 then we get a problem quite similar

to the one we just examined in section 4.2.1. For InterUnitCap = 1 we can have

units to be connected to up to one more other partner unit. This can lead to a graph

consisting of single and paired units. Because there are not many connections on the

units, the problem is still quite similar to the BinPacking problem and is treated

similarly.

Again, the complexity for the two cases of IUC = 1 is tackled. Once more, the idea

behind the solutions is based on the trivial structure of the unit graph that is being

produced. This time because of the nature of the restriction that the InterUnitCap

enforces on the unit graph we will get a result of isolated single units or up to isolated

unit pairs.

Our first result here is an extension of Theorem 4.2.1 where once again by reduc-

tion from BinPacking it can be shown that the optimization version of the Pup is

intractable when InterUnitCap = 1, and UnitCap is part of the input.

26

Theorem 4.2.3 (Intractability of the PuOp IUC=1). The PuOp is NP-complete

when InterUnitCap = 1, and UnitCap is part of the input.

Proof. We start by noticing that in the best case the connectedness of the units can

reach 1 so we will have pairs of units linked rather than individual units that we had

up to now. We observe that we can simply consider these pairs to be single units of

(UnitCap)′ = 2 ∗ UnitCap. Then we can use the exact same idea as above, for these

new units.

And so, again, we reduce from BinPacking, given as items S1, . . . , Sn, binsize b

and number of bins k. Notice here that, without loss of generality, we are assuming

the binsize b to be an even number. We make a PuOp instance by creating for every i

a biclique with Si zones and Si sensors, setting 2∗UnitCap = b and InterUnitCap = 0.

A packing with k of fewer bins exists if and only if there exists a solution to the PuOp

with k/2 or fewer units. Finally note that BinPacking remains NP-complete when

all the numbers are expressed in unary [22]. �

The next result is again on the case of InterUnitCap = 1 but this time, as before, the

UnitCap is a fixed constant number k. We show that this problem is tractable and

that it belongs in PTime by reducing to the equivalent version of InterUnitCap = 0

that we proved for Theorem 4.2.2 via exhaustive search.

Theorem 4.2.4 (Tractability of the PuOp IUC = 1 & UC = k). The PuOp is

PTime when InterUnitCap = 1, and UnitCap is a fixed constant number k.

Proof. We will show this by reducing to the case of InterUnitCap = 0. The reduction

comes natural. We can treat the unit pairs that we have in our instance of IUC = 1

as units of double the value of UnitCap of the case with IUC = 0; i.e.,

UnitCap IUC=1 = 2 ∗ UnitCap IUC=0

for the instance of InterUnitCap = 0. That way, we just increase the size of the

UnitCap and other than that treat the problem exactly as we treated the case of

InterUnitCap = 0. It is clear, that a solution with l or fewer units exists to the case

of IUC = 1 if and only if there exists a solution to the IUC = 0 with l/2 or fewer

units.

Hence, the Pup with InterUnitCap = 1 and UnitCap a a fixed constant number

k is in PTime. �

27

4.2.3 InterUnitCap = 2

For values of InterUnitCap = 2 the Pup, or SPup as we have introduced it, takes on

a whole different structure and becomes less trivial than the previous cases. Now, the

units can be connected enough to form paths and if the path is closed, even cycles.

This makes it harder as there are more possible combinations for the unit graph and

much more ways of including the sensors and zones in them. Accordingly, this version,

and the rest of InterUnitCap equal or more, are of great industrial interest, as many

real-life problems can be modeled to such instances. One should notice here that one

of the biggest differences that occur for InterUnitCap ≥ 2 is that a single connected

component in the input can be stretched out over many units in the solution - unlike

the prior cases where it could only stretch over one unit or a pair of them.

For this case, using the algorithm introduced in [3] and presented in section 2.2.3,

Gottlob at al. showed the following:

Theorem 4.2.5 (Tractability of SPuDp [3]). The decision problem for the SPup is

solvable by the algorithm DecideSPup in NLogSpace for InterUnitCap = 2 and

any given fixed value of UnitCap.

Remark 4.2.6. We should note here that all the previous results refer to arbitrary

input graph families. For the case of InterUnitCap = 2 the following classification

exists:

• The SPuDp and the SPuSp are in PTime for arbitrary input graphs.

• The SPuOp is in PTime only for logarithmically many connected components.

Remark 4.2.7. Finally, also note that we still do not know the complexity of this

case for when the UnitCap is part of the input and is not a fixed value.

4.2.4 InterUnitCap ≥ 3

No results were proven for these two cases, but we would like to refer the reader to

our Conjecture 2.1.1 regarding these results.

4.3 Pup Version Discrepancy

Notice that the Pup is a very multi-layered and a deep problem - for small changes in

just one of its parameters cause the problem, and its difficulty, to change completely.

As we go deeper and deeper into the different versions, conditions and constraints of

28

the problem, we learn more and yet more questions emerge. There are still a lot of

open questions on the complexity of the problem for values of InterUnitCap of 2 and

more and we invite the reader to independently explore those values.

Finally, recall that we have not examined the possible different sub-versions of

the Pup for different values of the other parameter, UnitCap. We believe that the

three main versions of the problem that we have described (IUC < 2, IUC = 2 and

IUC > 2) can be divided once more in terms of UnitCap. In particular, it is our

belief that there is one major division for UnitCap = 1 and UnitCap > 1. We will

not analyze it in this dissertation though.

29

Chapter 5

A Logical Approach to the Pup

5.1 Introduction

It is quite common to come across NP-complete problems on graphs that when re-

stricted to specific graph families can be solved in PTime or even linear-time. This re-

search area started in the 1970s when a lot of papers where written describing PTime

algorithms for NP-complete graph problems that only worked for graph families of

trees or series-parallel graphs. One characterization of problems that were decidable

in linear time on series-parallel graphs was presented by Takamizawa, Nishizeki and

Saito in [34]. Research then turned to finding the best generalization of the notion of

series-parallelness.

As it turned out, there are numerous graph classes whose structure is fundamen-

tally related to that of trees. In fact one can use this observation to solve problems

for which a solution is not known or is a lot harder for arbitrary graphs. Robertson

and Seymour pioneered this research writing a significant series of papers on graph

minors. It was they who in [31] introduced the notion of treewidth for a graph. Intu-

itively, treewidth is a measure of how close a graph is to a tree. The formal definition

will be given later in the chapter.

The concept of treewidth and other related ones were widely applied in the design

of (theoretically) efficient algorithms (e.g., Johnson in [29]). Several essential graph

classes have a universal bound for the treewidth of their graph members. For example,

trees and forests have a treewidth ≤ 1, series-parallel graphs and outerplanar graphs

≤ 2, almost trees with k additional edges have a treewidth of ≤ k + 1, Halin graphs

are at ≤ 3 and members of k -terminal recursive graph families1 have a treewidth of

1The statement assumes that all the basis graphs in the definition, with edges added between all

pairs of terminals, also have treewidth ≤ k.

30

≤ k. More detailed analysis on these families and classes can be found in [12, 28].

Concurrently, research lead to similar measures of graphs, some of which were

suggested as a generalization of the notion of series-parallel. And so, also in this case

linear time algorithms were found for these graph classes and for other previously

known classes of graphs. A notable suggested measure was the notion of tree-partite

graph by Seese in [33], which is closely linked to the treewidth concept.

There are many ways of finding a suitable “template” for the design of linear time

algorithms for various problems on these graphs, from giving a list of examples with

informal principles [2, 6] to definition of a language in which the property must be

expressed [7, 14, 33] as well as some combined approaches [35]. In this work, we

will use the second approach - definition of a language in which the property must

be expressed. The language we will be using is the Monadic Second Order Logic

(MSOL).

Monadic second order logic is a very powerful expressive language which contains

the propositional logic connectives ∧, ¬, ∨,→ and↔ (with the usual meanings: and,

not, or, implies, if and only if, respectively), individual variables x, y, z, x1, x2, ...,

existential (∃) and universal (∀) quantifiers and predicates. Moreover, it is distin-

guished from first-order logic by the following additions: it contains set variables

X, Y, Z, U,X1, X2, ..., the membership symbol ∈, and it allows existential and uni-

versal quantification over set variables. Mathematical logic has traditionally been

concerned with the “intrinsic validity” or “satisfiability” of statements in the form of

logical formulae. In order to do so, one must introduced structures as representatives

of possible worlds, and the satisfaction relation |= between a structure and a formula.

A structure is a set (of objects in the universe) and, for every predicate symbol in

the logical language under consideration, a table of tuples of objects satisfying it.

In order to show that a formula is “intrinsically valid”, a logician must directly or

indirectly show that the formula is satisfied by every structure compatible with the

logical language, and in order to show that it is satisfiable he must show that it is

satisfied by some structure.

Instead, we will use monadic second order logic sentences to define problems on

finite graphs. Solving a problem for a given graph will then correspond to deciding

if a given finite structure (that represents the graph) satisfies a given sentence (that

defines the problem). As an example, the property that a subgraph of G induced by

a set Z is connected can be stated as:

Partition2(U, V, Z) ≡ (Z = U ∪ V) ∧ (U ∩ V = ∅) ∧ (U 6= Z) ∧ (V 6= Z)

Adjacent(U, V) ≡ ∃u∃v(v ∈ V ∧ u ∈ U ∧ Adj(u, v))

Connected(Z) ≡ Partition2(U, V, Z)→ Adjacent(U, V)

31

where lower case variables range over vertices and upper case variables range over

vertex sets, and Adj is the adjacency relation of the graph and all free variables are

considered to have universal quantifiers.

Similarly, in this chapter we will focus on how the Pup can be exploited in this

notion - i.e. restricting the input graph families and solving the problem through a

logical language: the monadic second order logic. We will start the chapter by giving

a formal definition of all the necessary notions that we will be needing and then state

the theorems on which we will base our results. In particular we will use the original

results from Courcelle [17] and Arnborg, Lagergren and Seese [1].

5.2 Treewidth

We now give a definition of treewidth along with some other definitions that we will

be using later on, as presented in [4].

“Tree decompositions [31, 9] and their variants and generalizations [26] constitute

a significant success story of Theoretical Computer Science. In fact, tree decompo-

sitions and polynomial algorithms for bounded treewidth constitute one of the more

effective weapons to attack NP-hard problems, namely, by recognizing and efficiently

solving large classes of tractable problem instances. Structural problem decomposi-

tions such as treewidth are thus closely related to fixed-parameter tractability [18, 25].

Definition 5.2.1 (Tree Decomposition [4]). A tree decomposition of a graph G =

(V,E) is a pair P = (T, χ) such that T = (W,F) is a tree or forest, and where the

function χ associate to every w ∈ W a subset B ⊆ V such that:

(i). for every vertex v ∈ V there is a vertex w ∈ W with v ∈ χ(w);

(ii). for every edge (v1, v2) ∈ E there is a vertex w ∈ W with {v1, v2} ⊆ χ(w); and

(iii). for every vertex v ∈ V the set {w ∈ W | v ∈ χ(w)} induces a subtree of T .

Condition (iii) is called the connectedness condition. The subsets B that are associated

with the vertices of W are called bags.

Definition 5.2.2 (Width, Treewidth [4]). The width of a tree decomposition is

maxw∈W (|χ(w)| − 1). The treewidth tw(G) of G is the minimum width over all

of its tree decompositions.

Definition 5.2.3 (Path Decomposition, Pathwidth [4]). A path decomposition of a

graph is a tree decomposition where T = (W,F) actually consists of a simple root-

leaf path. The pathwidth pw(G) of a graph is the minimum width over all its path

decompositions.

32

The notion of treewidth is easily generalized from graphs to finite structures.

Definition 5.2.4 (Finite Structures [4]). A finite structure A consists of a domain

A, and relations R1, R2, ..., Rk of arities a1, a2, ..., ak, respectively. Each such relation

Ri consists of a set of tuples (r1, r2, ..., rai) ∈ R where r1, r2, ..., rai ∈ A.

A graph G = (V,E) corresponds to a finite structure whose domain is V , with a

binary relation E encoding the edges. If G is undirected, then E contain both pairs

(v, w) and (w, v) for each edge {v, w} of G. Undirected graphs are thus represented

as special cases of arbitrary (possibly directed) graphs.

Another related definition is the following.

Definition 5.2.5 (Gaifman Graph [4]). The Gaifman graph of a structure A, is the

undirected graph G(A) whose set of vertices is the domain A of A and where there is

an edge {a, b} if and only if a, b ∈ A and a 6= b, and there exists a tuple in one of the

relations of A in which a and b occur jointly.

A tree decomposition of the structure A is a tree decomposition for the Gaif-

man graph, G(A). The treewidth tw(A) of a structure A is defined accordingly, i.e.,

tw(A) = tw (G(A)). Similarly, the pathwidth pw(A) is defined as pw (G(A)).

The treewidth tw(C) (pathwidth pw(C)) of a class C of finite structures is the

maximum over all tw(A) (pw(A)) for A ∈ C. A tree decomposition of a hypergraph

H is a tree decomposition of the primal graph G(H) of H, which has the same vertices

as H and an edge between each pair of vertices that jointly occur in a hyperedge of

H.

It is NP-hard to determine the treewidth of a structure A. However, for each

fixed k, checking whether tw(A) ≤ k, and if so, computing a tree decomposition for

A of optimal width, is achievable in linear time [8], and was recently shown to be

achievable in logarithmic space [19]. Even though the multiplicative constant factor

of Bodlanders linear algorithm [8] is exponential in k, there are algorithms that find

exact tree decompositions in reasonable time or good upper approximations in many

cases of practical relevance; see for example [10, 11] and the references therein.

The treewidth of a graph or relational structure is an invariant that can be

used as a parameter to define infinite classes of graphs (or structures) related to

problem instances. Many NP-hard problems of practical relevance can be solved

in polynomial time on instances of bounded treewidth and some are actually fixed-

parameter tractable with respect to treewidth. Given that bounded pathwidth implies

bounded treewidth, these results hold a fortiori for bounded pathwidth. The notion

of treewidth is at the base of strong meta-theorems such as Courcelles Theorem [17]

which we will discuss later in this chapter.”

33

5.3 Monadic Second Order Logic (MSOL)

Monadic second order logic, as we said, contains the propositional logic connectives

∧, ¬, ∨, → and ↔ (with the usual meanings: and, not, or, implies, if and only if,

respectively), individual variables x, y, z, x1, x2, ..., existential (∃) and universal (∀)

quantifiers and predicates. Moreover, it is distinguished from first-order logic by the

following additions: it contains set variables X, Y, Z, U,X1, X2, ..., the membership

symbol ∈, and it allows existential and universal quantification over set variables.

Also, it is a restriction of second order logic (SOL) by forcing all relation variables to

be unary, i.e., range over sets.

This standard version of MSOL is also referred to as MSO1. Courcelle [16] and

other authors also considered an extended version of MSOL called MSO2 which was

originally defined for graph input structures only and which extends MSO1 by the

possibility of quantifying over subsets of the edges of the input graph. The definition

of MSO2 can be easily generalized to arbitrary structures by allowing quantification

over subsets of the input relation (notice that in the case of a graph, the input relation

is just the edge relation). Thus, for example, if a relational symbol R is part of the

signature, the a subformula (∃X ⊆ R)φ(X), expressing that there exists a subset X

of the relation R such that φ(X) holds for some formula φ, could be part of an MSO2

formula.

5.4 Logic Meta-Theorems

5.4.1 Courcelle’s Theorem

Courcelle showed the following fundamental result relating MSOL and problems of a

class C of structures of bounded treewidth.

Theorem 5.4.1 ([17]). For a fixed MSO2-sentence φ, and a fixed constant k, deciding

whether φ holds for input structures from a class C is solvable in linear time if the

treewidth of C is bounded by k.

Courcelle‘s celebrated theorem, 5.4.1, essentially states that every problem defin-

able in MSOL can be solved in linear time on graphs of bounded treewidth. However,

the multiplicative constants in the running time, which depend on the treewidth and

the MSO formula, can be extremely large [21]. Also, since MSO1 is a subset of MSO2,

the above theorem obviously also holds for MSO1 formulas.

This result has been generalized by Arnborg, Lagergren, and Seese to Extended

Monadic Second Order Logic (eMSOL) [1], and by Courcelle and Mosbah to Monadic

34

Second order evaluations using semiring homomorphisms [15]. In both cases, an

MSOL formula with free set variables is used to describe a property, and satisfying

assignments to these set variables are evaluated in an appropriate way.

5.4.2 Arnborg, Lagergren, and Seese’s Theorem

In the Arnborg et al. version of MSOL, namely eMSOL, one can express optimization

and counting problems, a fact that make eMSOL more expressive even from MSO2.

They found that solving problems expressible in this form over input structures is

FPT with respect to the treewidth of these input structures.

While, in the original setting in [1], eMSOL properties were defined in a much

more general context, for this work it will be enough to state a drastically simplified

definition and, accordingly, a simplified master theorem (5.4.3) as per the simplifica-

tion originally presented in [24].

By optimization we here understand the search for a minimal solution (for our

problem) based on some cardinality criteria. The solution itself is an “optimal”

assignment of sets to second-order variables that freely occur in some MSOL formula,

such that the formula is satisfied over a given input structure. More precisely we

state the following definition.

Definition 5.4.2 (Simplified version of a Definition in [1], originally presented by

[24]). An optimization problem in an extended MSOL cardinality optimization problem

if it can be expressed in the following form. The input of the problem is a structure

A = (V,E,H), where V is a set (the universe of A), and E and H are binary relations

over elements of V . Let ϕ(X) be a fixed MSO1 or MSO2 formula over A, where X

is either a free set variable ranging over subsets of V or a binary relation variable

ranging over subsets of E. The task is to find an assignment among all possible

assignments z′ to the variable X such that2:

|z(X)| = opt{|z′(X)| : (A, z′) |= ϕ(X)},

where opt is either min or max. A suitable assignment z is called a solution to

the eMSOL cardinality optimization problem.

Using this definition, Arnborg, Lagergren and Seese found the following principal

fixed-parameter tractability result.

2An assignment z to the variable X is an interpretation of X that maps X to a subset z(X) of

V if X is unary and a subset of E if X is binary.

35

Theorem 5.4.3 (see [1]). Solving extended MSOL cardinality problems is fixed-

parameter tractable with respect to the treewidth if the input structure. In particular,

for a fixed extended MSOL cardinality optimization problem P , and a class C of input

structures whose treewidth is bounded by some constant, the following can be done in

linear time:

• Determine whether P has a solution for an input from C.

• Compute a solution for an input from C, if one exists.

5.5 Pup and MSOL

5.5.1 Approach

After this extensive introduction and background presentation on the field of logical

approaches into algorithmic graph problems, one can only expect to see how this can

be applied onto the problem at hand - the Pup. The aim of the author is to relate

these results to the Pup and come up with new complexity results.

Our approach aims to implement the meta-theorems on some variation of the

initial problem. We now present the altered problem that was constructed for this

purpose. We will give intuition on why it still remains an interesting problem both

in a theoretical and in an applied scope directly after it.

Definition 5.5.1 (Partner Units Embedding Decision Problem - PuEDp).

.

INPUT: A bipartite graph G = (S, Z,EG), a topological graph T = (S, U, Z,ET)

and two numbers n,m ∈ N where n ≥ 1 and m ≥ 0

TASK: Does there exist a subgraph H ⊆ T such that H is a solution to the Pup

instance of input graph G = (S, Z,EG), UnitCap = n and InterUnitCap = m?

This new problem introduced here presents a different situation than the Pup.

The question at hand is the following: can we find a solution to the Pup instance

presented that “fits” in the topological graph given? In other words, assuming we

already have a structure on which we are to create our network, can we find a proper

subgraph of that structure that serves as a solution to the Pup?

The PuEDp is a problem that remains a theoretical challenge and a practical

tool. We will later show formally that the PuEDp is MSOL expressible. For now we

will focus on the importance and practicality of the problem presented.

36

Figure 5.1: An example of an input bipartite graph G and a topological graph T .

On a theoretical scope, this problem is a restriction (or generalization as we will

show later) of the Pup and so solving it and working on it provides a better under-

standing for the actual Pup. Working on the PuEDp gives directions for future work

on the area.

It is not rare to have a pre-designed template, network or configuration and want

to reuse it. That is where the PuEDp comes in. It is more often than not the

case that we have specific configurations and limitations for a design, which in the

PuEDp are expressed naturally through the topological graph T . T represents that

pre-existing structure that we have to use, the limited resources that we will have to

reuse, recycle, etc.. On that notion the PuEDp is a natural extension of the Pup.

Initially, one might perceive this as a restriction, but in fact we can re-define the Pup

in such a way to make the notion of extension come natural.

Definition 5.5.2 (Partner Units Problem - Pup). .

INPUT: A bipartite graph G = (S, Z,EG) and a topological graph Tmax =

(S, Umax, Z, Emax), where T includes the vertices of S and Z, Umax = 2∗max{|S|, |Z|}

and the edges Emax that form a complete graph for the vertices of Umax and each

vertex in S and Z is connected to each vertex in Umax and two numbers n,m ∈ N

where n ≥ 1 and m ≥ 0

TASK: Does there exist a subgraph H ⊆ T such that H is a solution to the Pup

instance of input graph G = (S, Z,EG), UnitCap = n and InterUnitCap = m?

We can see now that under this new definition, the Pup is only a special case of the

PuEDp. It is the case where the PuEDp is equipped with a topological graph that is

maximal. That means that the set U is maximum and it is fully connected; hence it is a

37

Figure 5.2: An example of an input bipartite graph G and the maximal topological graph

T as described in Definition 5.5.2.

complete graph, and for each vertex in S and Z, the edges between that vertex and all

the vertices of U exist. It should be intuitive now, that the PuEDp is a generalization

of the Pup for any topological graph (rather than just the maximal explained above).

On a less technical scope, the Pup under this definition is considered a special case

of the PuEDp because we are not given a random structure as our base network to

work on, but we are actually given the richest structure possible.

5.5.1.1 Decision Problem

Now, we will show that the PuEDp when restricted to bounded treewidth input

structures G and T , is tractable. We begin by giving the definition of this subversion

of the problem.

Definition 5.5.3 (Bounded Partner Units Embedding Decision Problem

- BPuEDp). .

INPUT: A bipartite graph G = (S, Z,EG) ∈ B and a topological graph T =

(S, U, Z,ET) ∈ B where B = {graphs G | tw(G) ≤ k} and two numbers n,m ∈ N

where n ≥ 1 and m ≥ 0

TASK: Does there exist a subgraph H ⊆ T such that H is a solution to the Pup

instance of input graph G = (S, Z,EG), UnitCap = n and InterUnitCap = m?

We now state and prove our tractability results.

Theorem 5.5.4 (Tractability of the BPuEDp). The BPuEDp is linear with respect

to the treewidth of the input graphs G and T .

38

Proof. First, we introduce a finite structure to model our input, that is: A =

{S, Z, U,EG ∪ET}. Note here, that this finite structure has a multi-partite universe,

alternatively, this could be presented as A = {A,E} where A = S ∪ Z ∪ U and

E = EG ∪ ET with added caution in the formulas.

We will say that there exists at least one assignment X that satisfies ϕ over the

structure A if and only if the BPuEDp is solvable. The BPuEDp is expressed in

MSOL, by ϕ(X), as follows:

ϕ(X) = ∃su ⊆ ET ∃uz ⊆ ET ∃uu ⊆ ET ((i) ∧ (ii) ∧ · · · ∧ (vi))

Where (i), (ii), ... ,(vi) are defined as follows:

(i). ∀s ∈ S ∃u ∈ U su(s, u) ∧ ∀u′ ∈ U su(s, u′)→ u = u′ ;

(ii). ∀z ∈ Z ∃u ∈ U uz(u, z) ∧ ∀u′ ∈ U uz(s, u′)→ u = u′ ;

(iii). ∀s ∈ S ∀z ∈ Z EG(s, z) → ∃u1, u2 ∈ U su(s, u1) ∧ uz(u2, z) ∧ [(u1 = u2) ∨

(uu(u1, u2))] ;

(iv). ∀u ∈ U ∀s1, ..., sn+1

∧

1≤i≤n+1

su(si, u)→
∨

1≤i,j≤n+1
i 6=j

si = sj ;

(v). ∀u ∈ U ∀z1, ..., zn+1

∧

1≤i≤n+1

uz(u, zi)→
∨

1≤i,j≤n+1
i 6=j

zi = zj ; and

(vi). ∀u ∈ U ∀u1, ..., um+1 ∈ U
∧

1≤i≤m+1

uu(u, ui)→
∨

1≤i,j≤m+1
i 6=j

ui = uj .

In words, the above predicates are defined as follows:

• su(x, y): sensor x belongs in unit y.

• uu(x, y): unit x is connected to unit y.

• uz(x, y): zone y belongs in unit x.

We show that the ϕ(X) is satisfiable if and only if there exists a subsetH ⊆ T such

that H is a solution to the Pup instance of input graph G = (S, Z,EG), UnitCap = n

and InterUnitCap = m with respect to the topology of T .

(⇒) If ϕ(X) is satisfied then that means that all sensors in S and all zones in Z

belong in exactly one unit ui ∈ U each. Also, each edge {s, z} ∈ EG of the input graph

has been covered either by including both s and z into a unit u or by including s in u1,

z in u2, and having u1 connected to u2. Finally, we make sure that each unit has up

39

to n zones and up to n sensors (UnitCap constraint) by expressions (iv) and (v), and

that each unit is connected with up to m partner units (InterUnitCap constraint) by

expression (vi). Hence, the Pup instance of input graph G = (S, Z,EG), UnitCap = n

and InterUnitCap = m is solvable.

(⇐) If the Pup instance of input graph G = (S, Z,EG), UnitCap = n and

InterUnitCap = m is solvable, again with respect to the topology inferred by T ,

that means the following. There exists a set of units U = {u1, u2, ..., un} such that

each unit ui ∈ U includes s1, ..., sk sensors and/or z1, ..., zl zones with k, l ≤ UnitCap

and each unit ui ∈ U of the unit graph has a degree d(ui) ≤ InterUnitCap. There-

fore, all of the above expressions (i), (ii), ... ,(vi) are satisfied and so there is some

assignment X such that ϕ(X) evaluates to true over A.

We have shown that the BPuEDp can be encoded in MSOL, and also, by def-

inition, the input structure has bounded treewidth, therefore by Courcelle’s Meta-

Theorem, Thm 5.4.1, the BPuEDp is fixed-parameter linear with respect to the

treewidth of the input structure. �

An immediate corollary of Theorem 5.5.4 is the following:

Corollary 5.5.5 (PuEDp is fp-linear). The PuEDp is fixed-parameter linear.

5.5.1.2 Optimization Problem

We will now extend our previous result for the optimization version of the PuEp.

We will show that when the input is restricted to bounded treewidth input structures

G and T , the PuEOp is tractable as well. We begin by giving the definition of this

subversion of the problem.

Definition 5.5.6 (Bounded Partner Units Embedding Optimization Problem

- BPuEOp). .

INPUT: A bipartite graph G = (S, Z,EG) ∈ B and a topological graph T =

(S, U, Z,ET) ∈ B where B = {graphs G | tw(G) ≤ k} and two numbers n,m ∈ N

where n ≥ 1 and m ≥ 0

TASK: Does there exist a subgraph H ⊆ T such that H is an optimal solution,

with respect to the solution space defined by the topological graph T , to the Pup

instance of input graph G = (S, Z,EG), UnitCap = n and InterUnitCap = m?

We show the following:

Theorem 5.5.7 (Tractability of the BPuEOp). The BPuEOp is linear with respect

to the treewidth of the input graphs G and T .

40

Proof. First, we introduce a finite structure to model our input, that is: A =

{S, Z, U,EG ∪ ET} (the same note as in proof of Thm 5.5.4 applies).

The BPuEOp can be expressed as follows as an eMSOL cardinality optimization

problem. Find an assignment z ⊆ U to set variable X = UOpt such that:

|z(UOpt)| = min{|z′(UOpt)| : 〈A, z
′〉 |= BPuEOp(UOpt)}

Where BPuEOp(UOpt) is an MSO2 expression defined as:

BPuEOp(UOpt) = ∃su ⊆ ET ∃uz ⊆ ET ∃uu ⊆ ET ((i) ∧ (ii) ∧ · · · ∧ (vii))

Where (i), (ii), ... ,(vii) are defined as follows:

(i). UOpt ⊆ U ;

(ii). ∀s ∈ S ∃u ∈ UOpt su(s, u) ∧ ∀u
′ ∈ UOpt su(s, u

′)→ u = u′ ;

(iii). ∀z ∈ Z ∃u ∈ UOpt uz(u, z) ∧ ∀u
′ ∈ UOpt uz(s, u

′)→ u = u′ ;

(iv). ∀s ∈ S ∀z ∈ Z EG(s, z) → ∃u1, u2 ∈ UOpt su(s, u1) ∧ uz(u2, z) ∧ [(u1 = u2) ∨

(uu(u1, u2))] ;

(v). ∀u ∈ UOpt ∀s1, ..., sn+1

∧

1≤i≤n+1

su(si, u)→
∨

1≤i,j≤n+1
i 6=j

si = sj ;

(vi). ∀u ∈ UOpt ∀z1, ..., zn+1

∧

1≤i≤n+1

uz(u, zi)→
∨

1≤i,j≤n+1
i 6=j

zi = zj ; and

(vii). ∀u ∈ UOpt ∀u1, ..., um+1 ∈ U
∧

1≤i≤m+1

uu(u, ui)→
∨

1≤i,j≤m+1
i 6=j

ui = uj .

In words, exactly as before, the above predicates are defined as follows:

• su(x, y): sensor x belongs in unit y.

• uu(x, y): unit x is connected to unit y.

• uz(x, y): zone y belongs in unit x.

We show that the BPuEOp(UOpt) is satisfiable if and only if there exists a subset

H ⊆ T such that H is the optimal solution, with respect to the solution space defined

by the topological graph T , to the Pup instance of input graph G = (S, Z,EG),

UnitCap = n and InterUnitCap = m.

Both directions of this proof are the same as in the proof of Theorem 5.5.4 with

the following additions.

41

(⇒) If we have found the minimum number of units that satisfy BPuEOp(UOpt)

and that is a solution to thePup instance of input graphG = (S, Z,EG), UnitCap = n

and InterUnitCap = m then it automatically is the optimal solution with respect to

the solution space defined by the topological graph T .

(⇐) If the Pup instance of input graph G = (S, Z,EG), UnitCap = n and

InterUnitCap = m is solved optimally, always with respect to the solution space

defined by the topological graph T , then that means that the number of units used

in BPuEOp(UOpt) is the minimum.

We have shown that the BPuEOp can be encoded as an extended MSOL cardinal-

ity problem, and also, by definition, the input structure has bounded treewidth, there-

fore by Arnborg et al.’s Meta-Theorem, Thm 5.4.3, the BPuEOp is fixed-parameter

linear with respect to the treewidth of the input structure.

�

Once more, an immediate corollary of Theorem 5.5.7 is the following:

Corollary 5.5.8 (PuEOp is fp-linear). The PuEOp is fixed-parameter linear.

5.5.2 An unsolved problem

The original approach we aimed at was to restrict the input graphs of the Pup to

the class of bounded treewidth graphs and then express the problem in monadic

second order logic or even extended monadic second order logic and apply one of the

two meta-theorems presented. This did not have fruitful results. Though the idea of

restricting the input graphs to having a bounded treewidth came almost naturally and

though these instances were close to the practical input that we get for applications

of the problem, MSOL was not expressive enough to encode it. In particular, we had

trouble because of the “monadic” nature of MSOL. We found that the problem needs

a dyadic second order logic to be encoded (binary relations).

It remains open whether there exists some other extension of MSOL such that

the Pup can be encoded in and remain under the range of effect of one of the two

meta-theorems proposed.

42

Chapter 6

Conclusion

The Partner Units Problem is a complex and multilayered configuration prob-

lem. For small value changes in its parameters the problem changes completely. As

a result of that,t has numerous versions and they have significant discrepancy. More-

over, we conjecture that almost all of those versions are NP-Complete. A fact that

we have proved for two of them.

We started this dissertation with the scientific framework that it belongs to, gave

the informal definition and then continued to present the formal definition of the

problem. Next, we showed the basic facts and remarks around the Pup that had

been noted by previous works and highlighted the research frontier on the Pup by

underlining all the crucial previous results done in [3]. We stated the DecideSPup

algorithm for the special case of the Pup and briefly noted the other encodings that

were used in [3].

We continued by presenting four new constraints for the general and for the special

case of the problem. Constrains that we believe if included in the two encodings of the

problem in Sat andCsp will be able to improve the runtime of these implementations.

These results were a product of graph-theoretic analysis on the structural properties

of the input graphs and the properties that they enforce to the final solution, a process

that not only lead to the results mentioned but also provided crucial intuition for the

complexity analysis that continued.

In the next part, we focused on the subdivisions of the problem and their com-

plexity analysis. We started by offering an intuitive division into 3 main categories

and then into some subcategories and explained the unique features that shape

them. As we described above, the different versions of the problem have many differ-

ences between them. We began our complexity analysis with the easiest versions of

InterUnitCap = 0, 1 and discovered that only they where tractable — i.e., in PTime.

All the rest, that we managed to prove, were in the NP-Complete class.

43

We used two different approaches to tackle the complexity of these versions. We

started with an algorithmic approach and tried to find reductions for the problems,

then tried to exploit structural traits with a direct approach and finally we turned to

logic.

The final part of our dissertation presents exactly this logical approach. In par-

ticular, this direction began with the intent to use the algorithmic meta-theorems

of Courcelle [17] and Arnborg at al. [1] to prove the complexity of the remaining

cases. Towards this goal, we presented the theory behind this approach and gave a

short introduction on the language that we would use; the Monadic Second Order

Logic and its extensions. Using this language we found out that it was impossible

to express the Pup, but that lead us to the discovery of a new problem; the intro-

duced Partner Units Embedding Decision Problem. This new problem could

be considered a generalization of the Pup. Finally, we proved that the PuEDp and

the PuEOp are fixed-parameter tractable with respect to the treewidth of their input

structures.

6.1 Impact of Work

We have given a thorough introduction to the up-to-date research on the Pup. We

introduced four new constraints that give a different perspective on the problem

and expand the intuition that we had on the problem. By this addition, we have

helped pave the way for more efficient encodings of the Pup and better runtimes.

We classified the different versions of the Pup and proved the complexity of more

than half of them. We described the difficulties and outlined the reasons for which

we could not prove the rest, thus setting the foundations for future research on the

complexity analysis. Finally, we introduced a variation of the problem, the PuEp.

We defined both decision (PuEDp) and optimization (PuEOp) versions, showed

their importance and proved their complexity.

6.2 Open Problems

We believe that our understanding on the Pup is still deficient in many areas and

hence there are still open problems related to the Partner Units Problem. We

present them here and invite further research on them:

• Creating an improved encoding for the SPup using the constraints introduced

in Chapter 3;

44

• Creating an improved encoding for the Pup using the constrains and search

method described in Chapter 3;

• Finding a stronger upper bound on the number of units needed for a solution;

• Determine the complexity of the SPuOp for the case of more than logarithmi-

cally many connected components;

• Proving the complexity of the three still open cases;

• Checking whether there is some new extended version of the MSOL that can

express the Pup; and

• Finding practical application scenarios and discovering new connections for the

two new problems introduced; the (PuEDp) and the (PuEOp).

45

References

[1] Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-

decomposable graphs. J. Algorithms, 12(2):308–340, 1991.

[2] Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for np-hard

problems restricted to partial k-trees. Discrete Appl. Math., 23:11–24, April

1989.

[3] M. Aschinger, C. Drescher, G. Gottlob, P. Jeavons, and E. Thorstensen. Tackling

the Partner Units Problem. Technical Report RR-10-28, Computing Laboratory,

University of Oxford, 2010. Available from the authors.

[4] Markus Aschinger, Conrad Drescher, Georg Gottlob, Peter Jeavons, and Evgenij

Thorstensen. Structural Decomposition Methods and What They are Good

For. In Thomas Schwentick and Christoph Dürr, editors, 28th International

Symposium on Theoretical Aspects of Computer Science (STACS 2011), vol-

ume 9 of Leibniz International Proceedings in Informatics (LIPIcs), pages 12–28,

Dagstuhl, Germany, 2011. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[5] Third International Answer Set Programming Competition 2011.

https://www.mat.unical.it/aspcomp2011/, 2011.

[6] Marshall W. Bern, Eugene L. Lawler, and A. L. Wong. Linear-time computation

of optimal subgraphs of decomposable graphs. J. Algorithms.

[7] Hans I. Bodlaender. Dynamic programming on graphs with bounded treewidth,

1987.

[8] Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions

of small treewidth. In Proceedings of the twenty-fifth annual ACM symposium

on Theory of computing, STOC ’93, pages 226–234, New York, NY, USA, 1993.

ACM.

46

[9] Hans L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1–

21, 1993.

[10] Hans L. Bodlaender, Fedor V. Fomin, Arie M. C. A. Koster, Dieter Kratsch, and

Dimitrios M. Thilikos. On exact algorithms for treewidth. In Algorithms - ESA

2006, 14th Annual European Symposium, Zurich, Switzerland, September 11-13,

2006, Proceedings, pages 672–683, 2006.

[11] Hans L. Bodlaender and Arie M. C. A. Koster. Treewidth computations i. upper

bounds. Inf. Comput., 208(3):259–275, 2010.

[12] H.L. Bodlaender. Classes of graphs with bounded tree-width. Technical Report

RUU-CS-86-22, Department of Information and Computing Sciences, Utrecht

University, 1986.

[13] S. A. Cook. Characterizations of pushdown machines in terms of time-bounded

computers. Journal of the ACM, 4:4–18, 1971.

[14] B. Courcelle. The monadic second-order logic of graphs iii: Treewidth, forbidden

minors and complexity issues. Informatique Thorique.

[15] B. Courcelle and M. Mosbah. Monadic second-order evaluations on tree-

decomposable graphs. Theor. Comput. Sci., 109:49–82, March 1993.

[16] Bruno Courcelle. Graph rewriting: An algebraic and logic approach. In Handbook

of Theoretical Computer Science, Volume B: Formal Models and Sematics (B),

pages 193–242. 1990.

[17] Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets

of finite graphs. Information and Computation, 85(1):12 – 75, 1990.

[18] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Springer,

1999.

[19] Michael Elberfeld, Andreas Jakoby, and Till Tantau. Logspace versions of the

theorems of Bodlaender and Courcelle. In 51th Annual IEEE Symposium on

Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas,

Nevada, USA, pages 143–152, 2010.

[20] A. Falkner, A. Haselböck, and G. Schenner. Modeling Technical Product Con-

figuration Problems. In Proceedings of the Workshop on Configuration at ECAI

2010, Lisbon, Portugal, 2010.

47

[21] Markus Frick and Martin Grohe. The complexity of first-order and monadic

second-order logic revisited. In Proceedings of the 17th Annual IEEE Symposium

on Logic in Computer Science, LICS ’02, pages 215–224, Washington, DC, USA,

2002. IEEE Computer Society.

[22] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman,

1979. p. 226.

[23] G. Gottlob, N. Leone, and F. Scarcello. Hypertree Decomposition and Tractable

Queries. Journal of Computer and System Sciences, 64(3):579–627, 2002.

[24] Georg Gottlob and Stephanie Tien Lee. A logical approach to multicut problems.

Inf. Process. Lett., 103(4):136–141, 2007.

[25] Martin Grohe. Descriptive and parameterized complexity. In J. Flum and

M. Rodriguez-Artalejo, editors, Computer Science Logic CSL’99, volume 1683,

pages 14–31. Springer, 1999.

[26] Petr Hlinený, Sang il Oum, Detlef Seese, and Georg Gottlob. Width parameters

beyond tree-width and their applications. Comput. J., 51(3):326–362, 2008.

[27] J. N. Hooker. Integrated Methods for Optimization. Springer, New York, 2006.

[28] Neil Immerman. Languages that capture complexity classes. SIAM Journal of

Computing, 16:760–778, 1987.

[29] David S. Johnson. The np-completeness column: An ongoing guide. Journal of

Algorithms, 8(2):285 – 303, 1987.

[30] M. Meringer. Regular Graphs Page.

http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html.

[31] Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic aspects of

tree-width. J. Algorithms.

[32] Daniel Sabin and Rainer Weigel. Product configuration frameworks - a survey.

IEEE Intelligent Systems.

[33] Detlef Seese. Tree-partite graphs and the complexity of algorithms. In Funda-

mentals of Computation Theory, FCT ’85, pages 412–421, London, UK, 1985.

Springer-Verlag.

[34] K. Takamizawa, T. Nishizeki, and N. Saito. Linear-time computability of com-

binatorial problems on series-parallel graphs. J. ACM, 29:623–641, July 1982.

48

[35] S.T. Hedetniemi T.V. Wimer and R. Laskar. A methodology for constructing

linear graph algorithms. Congr. Numer:.

49

